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Abstract

Let us consider an extended configuration manifold M =
M™ x z° where M is Lagrange's configurations n-dimensional
manifold and z° = 7(Rt) is taken from the given relations gen-
erating the manifold M. In some special cases z’ = ¢ can
be taken, but ¥ = { can not. The extended tangent bun-
dle has dimension 2n + 2. Metric on M is given by ds* =
gtj(:x:}d:.-:‘d.r-’" + ngd:.-:ﬂd:r + goodz%dzC. The set of all covect-:rrs
pi = 9i;47 + gi02° and po = goji’ + goox? at z = (29,21, ...,2™)
forms an extended cotangent bundle 7" .M having a natural sym-
plectic structure. The adding coordinates 2% to M, % to T'M or
po to T*M is not simply algebraic extension respectively of M,
TM and T* M, but have geometric and physical meaning. The
geometry of such spaces is not considered so far and we mod-
ified the whole standard Lagrange’s and Hamilton’s mechanics
systems on such a geometric base. The D’Alembert-Lagrange’s
principle as well as Hamiltonian principle or the least action
principle are appropriately restated. There are more indepen-
dent Lagrange’s and Hamilton’s equations and more variations
of rheonomic constraints (zg # 0,6t = 0). Poincare’s integral
invariant for nonautonomous systems is generalized.
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1 Introduction

Symplectic geometry adequately describes the movement of mechani-
cal systems with scleronomic constraints. For such systems symplectic
geometry is identified with Hamiltonian mechanics on 2n-dimension
cotangent bundles (see for example [3]). Taking into consideration the

system of N material points with constant masses m,, (v = 1,..., N)
scleronomic geometric constraints

Sy (yl,---,yw)zﬂs p=1..kE<3aN, ygeB™, (1)

generate an n-dimensional differential metric manifold M := M™ where
i1s n = 3N — k. The metric on manifolds M is Riemannian

ds® = a;;(z)da'ds’, ze M, (i,j=1,..,n), (2)

and the metric tensor a;; = aj;(x',...,2") is identified with the inertia
tensor of the mechanical system. N-dimensional tangent vector & =
(&',...,2")T can exist in any point of M.

Coordinates of the impulse covector

pi = a5 (z) 7, (3)

belong to 2n-dimensional cotangent bundles 7* M. On them the first
and the second form

w:=pdz, §:=dpAdx, (4)

are defined and the integral invariant relation

.[acw:: [[:Q’ (5)

The mechanical motion on T* M is described by Hamiltonian funec-
tion (see for example [2])

is proved.

H = a;; (z) pip; + 11 (z) , (6)
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and the system of 2n differential equations

g Nkl
p:'—_a-1 I_'apt (?)

However, if Egs. (1) are non-autonomous, i.e. if the system has
time dependent constraints such geometry cannot thoroughly describe
the mechanical motion. In difference from scleronomic constraints (1)
rheonomic constraints contain an independent parameter ¢, and in stan-
dard analytical mechanics are written as in differential geometry in the
form

Llwil=0, yekZ”, z6M (8)

The metric of manifolds generated in that way considerably differs
from the metric (2) because

ds® = a;; (z,t) dz'da? + 2b; (z,t) da'dt + c(x,t) dt’. (9)

The difference between that metric tensor and the tensor in metric
(2) is very important as regarding the number of dimensions so regard-
ing the physical nature. In metric (2) all coordinates are of geometric
nature and in metric (9) a differential of kinematic parameter t ap-
pears. Therefore symplectic geometry has met with difficulties at first
application in the mechanics of rheonomic systems.

In the case of metric form (2) the kinetic energy E of the metric sys-
tem appears as a homogeneous square form of the generalized velocities
:j:

N . .
by = Z myv; =ay () ', vy € LM, €TM, (10)
v=1

but for the metric form (9) there is another case

2By = ay (,8) 887 + by (2,0) 8 + ¢ (.1). (11)

Differences are obvious, significant and far-reaching. N coordinates
of a tangent vector act in each of the two formulas (10) and (11). In
mechanics it is a vector of velocity v(x).
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If the constraints are written in the form f,(ry,...,ry) = 0, then the
position vectors r; r € R*, appear as vector functions r = r(z!, ..., z").

The vector of velocity of the point v-th is by definition

dr He. .
I — T gt 12
2 dt 5I‘$ (12)

This is a tangent vector which in any point on manifolds M™ has n
base vectors

Ir ()
ox’

as well as n coordinates # € T, M. However, in the case of time de-
pendent constraints f,(r,t) = 0 — r = r(z,t) the vectors of velocity
v, = (0r,/0x') ' + Or, /Ot have, as it can be seen, the n + 1 vector
component, and in the formula (8), like in other relevant relations, me-
chanics acts only as the n coordinates ; of the (n + 1) dimensional
vector field v. In order to overcome that discord a series of papers [2],
4], [5], [6], [7]., [11] were written at the end of the 1920s and especially
the 1930s. A good ground for the solution of that problem, in my opin-
ion, provided the papers of Zdenek Horak. Although Horak had earlier
been quoted I saw his papers as late as in October 1994 at the Faculty
of Mechanics and Mathematics of the Moscow University. I did not
have the opportunity to get the earliest Horak’s paper until the 6th
Conference on Differential Geometry in Brno in 1995. I hope I would
get the opportunity to write at length about his papers on some other
occasion. Unfortunately another standpoint known as ”"homogeneous
formalism” gained the advantage.

=g (I) = TEM,

According to that formalism time ¢ has been taken for (n + 1) co-
ordinate, x,,7 = t and by it the configuration manifold M has been
extended to M™*!. The negative Hamiltonian p,,, = —H, the physical
dimensions of which cannot be brought into harmony with Descartes’s
and Newton’s definition, contained in the relations (3) has by defini-
tion been taken for the corresponding (n + 1) coordinate of the cov-
ector impulse (3). That point of view of homogeneous formalism has
not brought about any results in classical mechanics. On the contrary,
it has brought into analytical dynamies disorder of invariance, of the
variational principles and of the integral invariance [w', which are the
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generating foundations of the theory of mechanics. Some contemporary
authoritative and popular authors (see, for example [1]) having noticed
difficulties with manifolds in the case of the non-autonomous system go
back to the spaces E*N with the vector orhonormal base € = (€1, €2, €3).
However, by a more serious analysis of the geometric and dynamic na-
ture of the non-autonomous constraints (8) a conclusion can be made
that in fact they generate natural extended manifolds M™*!.

2 Extended configuration manifolds

We observed N constrained masses points the positions of which were
determined by 3N rectilinear rectangular coordinates y = (k. 98,10) =
1 ...4*N) € E3N_ The relations (8) can be written in a vectorial form

(' y
fu(rrseiswn,t) =0, (13)

where t is an independent variable, t € [—oc,00], [dim t] = T. In
mechanics and physics ¢ is a symbol of time by which the change of the
position of points M, is described. Accordingly, all coordinates y or
vectors T act as functions of ¢t and some parameter R which the relations
(13) contain. Since the coordinates y, [dim y] = L and the variable ¢
have different physical dimensions there is always a parameter N in the
relations (8) or (13) which makes them dimensionally homogeneous.
For example, the constant parameter  in the relation f(y.t) = y' +
y? + y* — 41%(2 — cos’wt) = 0 must have a dimension of the length L.
and [dim w] = T~1. It is therefore more appropriate to write down the
relations in the form

PP ) =0 = (). (1)

We called the coordinate y° rheonomic coordinate [10] because it
generally speaking differs from other coordinates y only in that y° is a
known function of the time t and the known parameter N while other
coordinates y are unknown functions of ¢ and of some other parameter.
The function %°(R,t) is not arbitrary but is taken from one of the
equations (13). In the given example it could be one of the following
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functions: 3 = I(2 - coswt), y° = lcoswt, y° = coswt, y° = wt and
¥ =at,a=1; [dim a] = LT, but cannot be Yy =t

Introducing the coordinate z° = (X, ¢) which is differentiable ac-
cording to the variant ¢ and variable according to the parameter R,
like other dependent y and independent z coordinates, the problem of
non-autonomous constraints (13) is reduced to the case (1) and of non-
homogeneous square forms (11) to the homogeneous form (10) whereby
the number of dimensions of manifold M is increased by one coordi-
nate z°, 2° & £ € M™! =: M. Really on the basis of the theorem
on implicit functions and on condition that rank {8y/dt} = k, it is
possible to determine coordinates y from k equations (14) by means of
3N — k + 1 independent coordinates z & 2% y = y(a°, z) or

=T, (:ﬂ”,ﬂ:). (15)

In that way the from of all relations from (1) to (7), as well as (10),
(12) is helpful for non-autonomous systems too whereby indexes take
the values of 0,1,...,n instead of 1..... n for non-autonomous systems.
That statement can simply and quickly be proved. If we start from
(15) we see that the vectors of velocity

e g;g:i;%r %:&:": g;:ti“, a=0,1,..n, (16)
have each n + 1 vector components and the same number of coor-
dinates &“. In every v-th point there is (n + 1)-dimensions bases
(Or,/02° Or, /O, ..., Or,/Oz"™) which generate the tangent bundle T, €
R™*! and adequately (2n+2) tangent bundle T M to which generalized
i e T e L

v

velocities x = (&

Since the summary of the vectors v, square with added scalar-
masses m, can be written in the form
N

gt i dr,\’ or, Or
9 v LTy v .a.f
My, = ) My | — | = h,—— —_Lgags
Wi ‘(dt) e e

v=1 v=1

it follows that the non-homogeneous square form of energy (11) obtains
on T'M a homogeneous form

!'\.i'
Py = Z My vV, Egapi®i’, (17)

=1
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and that the metric of manifolds M is

ds® = 2Edt? = gapdz“da”, (18)
where .
: or, Or, . :
gﬂ,ﬁl‘ — i; 'ﬂl{jm - ﬁ = th,d1 X, .‘I-} = U‘ ]_1 e A (lg)

is the metric tensor. In mechanics that tensor represents characteristics
of inertia and is therefore called inertia tensor [10].

3 Rheonomic cotangent bundles

According to Descartes and Newton the impulse of the v-th material
point 1s
Py = MyV,, (20)

and the system impulse should be a summary of impulses of the material
points. In order to avoid difficulties of summarizing constrained vectors
due to indispensable parallel motion one resorts to projection of all
vectors (20) on coordinate lines and to the subsequent summarizing
of projections. Taking into account that dr,/dz” =: g,)s are basic
coordinate vectors of tangent bundles of the extended configuration
manifolds M, g, €T,.M operations of scalar multiplication of relations
(20) by corresponding vectors g, and of summarizing by index bring
about generalized impulses

N . g, . :
Ps = Z Tﬂtlﬁ.’l‘ﬁ : (‘}’I:-HIJ = Gags (.‘IJU,;IT) g (21)
v=1 1 ;

Therefore, without introduction of new definitions by means of sim-
ple algebraic relations (n + 1)-dimensional covector (21) is obtained or
in a more elaborate form (21)

Pi = Gij (Iun 37) &’ + gio (Iu.-'?f) & (22)

Po = Yoj (;L'D? ;1:) 7 + goo (.'i!:n'1 .'J':) %, (23)
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The last relation explicitly shows how much (23) differs from def-
inition p, 1 := —H. The covector p = (po,p1, .., Pn) on manifold M
produces extended cotangent bundles 7* M.

The bundle 7*M appears as a cotangent subbundle 7*M — T* M
so that it is possible to follow the motion on T*M and on T*M but

naturally portraits and physical attributes are different in these bun-
dles.

The motion of the mechanical system with non-autonomous con-
straints on extended cotangent bundles is described with mechanical
energy function

E = 56° (+°,2) paps + 1 (z%2) + P (a); P o= — [ Rodd”

and the system of 2n + 2 differential equations in Hamiltonian form

_ )0 i 0
Pa = —@ F L el apa. (24)

With the aim to make a comparison with the equations (7), the
equations (24) can be written in the form

. oH il ) |

o Bzt’  Ba ap;’ (25)
. OH i oH
}‘Ju—--*@'l'ﬁ{h l—apﬂ, (26)

where H = ¢*p,ps/2 + II is Hamiltonian and Ry the power of non-
autonomous constraints [9,10].

If the constraints are autonomous there is no rheonomic coordinate
1Y and according to that the bundles 7" M are reduced to T*M and
the equations (26), as well as the function P(z°) disappear. In that
case the equations (24) are reduced to the system of 2n of Hamiltonian

equations (7).
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4 Integral invariance

It is proved similarly as in section 2 that the relation (3) remains pre-
served on 7" M whereby each of the forms w and () is extended by one
summand, 1.e.

w = pidz’ + podx®,
Q = dp A dx + dpo A dz°.

Instead of the invariance I = §. p;0x' the invariance
J = j{piéa:‘ = f (pt-b‘;r +pg<5:r“) ,

appears on T* M where 6z°, 6z, ..., 62" are the variations of generalized
coordinates z° & z.

It gain one’s ends: on such naturally extended (2n 4+ 2)-dimensional
cotangent bundles T* M it is possible to describe the motion of the
non-autonomous systems which by its form and way is the same as the
motion of autonomous systems on 2n-dimensional cotangent bundles
T*M. The motion differs by the number of dimensions and the physical
attributes of motion.

Example 1 ([1/, p. 87). Consider the motion of a bead with mass m
along a vertical circle of radius r which rotates with angular velocily
w around the vertical aris passing through the center O of the circle.
Let x be the angular coordinate on the circle, measured from the highest
point.

Let 41,2, ys be Cartesian coordinates in E? with origin O and ver-
tical axis 3. Let xy := @ be the angle of the plane of the circle with
the plane y;0ys. The bead is constrained by the relations

fi=r—const. =0, fo=p—wt=0,

or
Yy, = rsinxrcosTy, Yo =TrsinTrsinxy, Y3 =TrcosT.
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Let zo = wt.
The manifold M is circle, but manifold M is sphere.
‘The kinetic energy has the form

I e e e e T .
T_2(y1+y2+y3)—~2—(1: + Igsin I)_Emrﬂ Potimrs ,

because the impulses are p = mr?i and py = mriigsin® .

The potential energy is Il = mgr(1 + cosz). Hamiltonian is

H=E_;;+H:

sin“ x

2
: P
S (pz + 2 ) + mgr(1 + cos z).

Differential equations of motion (25) and (26) are

2
£ Py COST g : P
p= 38 —mgrsingz, fa=-—Sgy
2mresm” x mr
- . p
Po=Ro, Io= B ar. 3
mrésin®x

It follows Ry = mwr?zrsin®z; in this case Ry in Mechanics is the

momentum of the Coriolis force.

The hash line on carte (p, x) are
p? = 2m*r? [ (rw? cosz + g) sin zdzx =

= m?r? (mﬂ2 cos’ T — 2g cosx) + const.,

Remark 1 There are two main, but contradictory, complains. One of
them says that all that is not possible; it would mean that the results
are incorrect. The other one says that it s well known, pointing to
numerous papers of different authors. The first complain is answered in
monograph [10] and in papers [13-15]. For the theory of homogeneous
formalism one can consull [16]. But, to make things clearer, let us

compare our approach to one of:
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4.1

The pointed papers (For example [12, p. 923-
925])

"(2) Author’s approach is based on a doubling of time variable.
Thus one introduced "two time” denoted t and 7, playing different
roles; the time t plays the role of geometrical time corresponding
to the control of the system, while the other 7, which parametrizes
the evolution plays the role of a dynamical time.”

"(3):(a) " The state space of a dynamical system with time- depen-
dent constraints and n degrees of freedom is given by a (2n + 1)-
dimensional differentiable manifold W admitting an interesting
structure.”

"(b) ...We say that a dynamical system has time-dependent con-

straints if its state space can be defined by a product canonical
manifold (W, z,t, E).”

”(d) Consider the 2(n+1)-manifold W = W x R and let 7 : W —
W to the corresponding projection.”

"(5) (a) Dynamics is determined on the state space by a func-
tion H € N(W), the classical (time-dependent) Hamiltonian of a
system. The Hamiltonian determines on W a vector field

Yy = E +[A, E] " (27)

"Denote by { , } the Poisson bracken of the state space and
introduce a canonical chart {¢° = t,q,p} of domain U of this
space. For a motion c(t), the proposition can be translated by

dgly
¥y (c(t)), (28)

and

& (e(0) = 5= (1) = (. He )

d OH i
% (e(t)) = —&?ﬂ (c(t)) = {H,pa} (c (t)) )
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or

g 00 a T T

B o T
" (EJ Introduce Poisson bracket { , } of the symplectic manifold
(W, ﬁ) »

"The Hamiltonian vector field of (I«Tf’ ﬂ) corresponding to
(po + H) € N (W) :

?H = [ﬂ,pu-i—H],

is such that 7 : Yy = Yy admits the component

- oH
yf[j = _ﬁ i

Therefore, the projection by 7 of the integral curves of Yy are the

integral curves of Yy and Hamilton’s equations can be completed
by
dpp OH

R %

" (c) It can be easily verified that if u € N (W), its total derivative
with respect to t, along the orbits of Y}, is given by

du  Ou

dt ot

(30)

+{H(t),u(t)}”. (31)

"Ifa e N (ﬁ:) . its total derivative with respect to t, along the
orbits of Yy, is given by

dii i ®

- = o+ H,a} . (32)

If & = u, (32) reduced to ( 31). Also, if we take & = po + H, the
relation (32) gives

po + H = const. (33)
Thus one can roughly say that, along the orbits, py is equal to the
negative of energy up to an additive constant.”
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4.2 Our approach

e Our approach is based only on time ¢ as independent variable.
Time t has physical dimension (dim ¢ = T") and plays kinematical
time. Our auxiliary coordinate ¢ = 7(X,¢) is a faction of a
geometrical or kinematical parameter R and the time, from the
equations of time-dependent constraints. The coordinate q° can
have meaning of angle of phase. It can linearly dependent on time

(¢° = Nt, R € R) but ¢° At.

e The state space of a mechanical system with time-dependent con-
straints and n + 1 degrees of freedom is given by a (2n + 2)-
dimensional differentiable manifold 7* M admitting an symplec-
tic structure.

o We say that state space of a system of material points can be
defined by a (2n + 2)-dimensional canonical cotangent manifold
T* M if there exist time-dependent constraints.

e Dynamics on the state space is determine by the Hamilton’s func-
tion !
H=a"pp;+V(q) =H(pq),
where q := qo,q1,.--,qn) & P := (Po,p1,pPn) € T*M, and change
constraints force Ry.

e Denote by { , } the Poisson bracket of the state space (g&p)
T* M. For the motion p(t) & g(t) of a mechanical system can be
translated by

dqi z
- :{H,q}T (34)
dp; :
dpt ={H,p:} + @, (=0.1,...n), Lo
or more explicit
d¢® OH
p Sl a®py + Q%ps,
| (36)
dpo oH
i —{H,po} + Ry = “@ + Hy,
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dq® z dH
_d}-_ Ay {‘!11‘? }_ ﬂpﬂu

(37)
dpq oH
E = {H,pﬁ}——aqu,l (ﬂf-u 1,2,...,‘1’1).

o If 4 € T* M, its total derivative with respect to t in the sense of
the equations (34) and (35) is given by

du O
o T Ho—.
{H,a} + %3m0,

dt (35

At the other hand, the composition of the covector (35) and vector
(24) reduces to

OHdp; OHdq @ dH dq”

_ =Qi——, — = Rp—. 3
dp; dt +8q= dt « gt (¢ di O dt G
The equation (38) as well as the equation (39) gives
H= /h’udqu + const. (40)

Comment: The relation (33) and (40) clearly illustrate the quali-
tative difference of the two approaches. In our approach, as it can be
seen from (3) and (6) p can never be equal to the negative of energy up
to an additive constant. As in Descartes’s and Newton’s approach, py
is generalized momentum (impulse), and Hamilton’s function can not

linearly depend on p (see, for example. (20), (23) and (26) or [10]).
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Reonomni tangentni i kotangentni snopovi i primene

Posmatra se prosirena mnogostrukost M = M" x z°, gde je M La-
granzeva konfiguracija n-dimenzionalne mnogostrukosti a z° = 7(Xt)
je uzeto iz zadatih relacija koje generisu mnogostrukost M. U nekim
specijalnim sluéajevima moze se uzeti da je z° = t ali ne i 2° = .
Prosireni tangentni snop ima dimenziju 2n + 2. Metrika na M je data
sa ds? = ¢ j-(;r)d;}:fd:v" + 2goidz’dat + gopdxdx®. Skup svih kovektora
pi = gijt? + giox® i po = goj @’ + gooi® u x = (2°, 2!
kotangentni snop simplekticke strukture 7* M. Dodavanje koordinate
 u M, 2% w TM ili pp u T*M ne predstavlja prosto algebarsko
prosirenje M, TM i T*M, ve¢ ima geometrijsko i fizicko znacenje.
Geometrija dobijenih prostora nije razmatrana veé¢ je na takvoj ge-
ometrijskoj bazi modifikovana standardna Lagranzeva i Hamiltonova
mehanika, a takodje i Dalamber-Lagranzev princip, Hamiltonov prin-
cip i princip najmanje prinude. U ovom pristupu ima vise nezavis-
nih Lagranzevih i Hamiltonovih jednacina 1 vise varijacija reonom-
nih ogranicenja (zp # 0, 6t = 0). Poenkareova integralna invarijanta
za neautonomne sisteme je uopstena.

,---,Z™) €ini prosireni



