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Abstract

In this paper we define the mean rotation angle for de-
formable body. Then making use of this definition we show
that such a measure of a rotation may be used to define mean
rotation in sense of Cauchy and Truesdell and Toupin uniquely
for each plane at any point of the body without any restriction.

1 Introduction

From the fundamental theorem it is known that the deformation at any
point X of a deformable body B may be regarded as resulting from a
translation, a rigid rotation of the principal axes of strain, and stretches
along these axes and as such is local one. The translation, rotation and
stretches may be applied in any order, but their tensorial measures are
independent. of this order. It is also known that while the principal
axes of strain are not rotated in a pure strain, it does not follows that
no linear elements suffer rotation. Because of all of that the measure
of rotation of a deformable body is more difficult than that of a rigid
body. The theory of finite rotation of a deformable body dates from
Cauchy (1841), fourteen years after he completed the theory of strain.
He took as a measure of rotation the mean values of the angles through
55
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which all elements in each of three perpendicular planes are turned. To
be precise we follow the approach explained by Truesdell and Toupin
in {1].

For a given deformation gradient F each clement dX at X deformed
to an element dx = FdX. Their corresponding unit vectors are denoted
by N and n, respectively. Let us denote by Ny = jcos ® + ksin ® unit
vector perpendicular to X-axes at X. Then Cauchy’s mean rotation
angle y y about X-axes is given by

1 g2
=5 [ O (@)de, 1)

where 1y is the angle between Ny and ny, the projection of n upon
Y Z-plane. This formula, as was noted in [1], is not. sufficient to caleu-
late xx. To remedy this difficulty Truesdell and Toupin made a sug-
gestion to replace this formula by cos?y. The same conclusion holds
for 7y and 1)z. However, the angles Xx: Xy and xz in any case do not
form vector field; also they do not suffice to determine the rotation of
the individual element at X.

Although Cauchy’s measure of rotation has never been used there
where many attempts to calculate it in the original or modified form.
Novozhilov has modified Cauchy’s definition by putting

1 2m

tanTty = % g tan '.'?_'{ (‘-I}} dq) (2)

which enable one to perform the integration explicitly. Moreover, if one
introduces the additive decomposition of the deformation gradient

F=I+E+W, (3)

where I, E-and W are identity, symmetric and skew-symmetric tensors,
respectively, we may put Novozhilov’s integral in invariant

Was
v (4)
\/ ]. ‘I"' IT 1E - ..lr I 1E
where (E is two dimensional tensor obtained from E by suppressing
all components having index 1. This elegant formula of Novozhilov

tEI.I]T_'{l = —
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suggests that W may be considered as a measure of mean rotation.
Marzano, [3], had shown that such an interpretation holds only if the
class of admissible deformations is severely restricted by the require-
ment that F be positive definite. The mechanical counterpart. of this
mathematical requirement amounts to exclude that even one single lin-
ear element may be turned through a right angle, irrespective of its
stretch. Following a suggestion made by Truesdell and Toupin he then
introduces another measure of mean rotation replacing tan 7y by cos Ty,
which does not suffer the limitation of Novozhilov. But still there is
left restriction on admissible deformation for the angle 1}y to be well
defined, namely, the projection of FN has to be different of zero. He
then restricted his investigation to the plane perpendicular to the di-
rections of eigenvectors of F', the transpose of F. For deformation
gradients being either pure rotation, or pure strain, or else "additively”
pure rotations, he performed the explicit calculation of the measure of
mean rotation he proposed. Very recently Q.S. Zheng and K.C. Hwang,
[4], [5], succeeded in evaluating Xy with quite a simple formula. Two
approaches were given: one is geometrical related to the rotation circle
and another one is algebraic. They also showed that Cauchy’s mean ro-
tation angle, evaluated with respect to the eigenvector of Q, the finite
rotation tensor in polar decomposition of F, is equal to the rotation
angle of Q. Furthermore, Canchy’s mean rotation angle can be related
to so-called projection polar decomposition. To remedy the difficulty
in definition of Cauchy’s measure of mean rotation they introduced
so-called generalized local mean rotation, a modified Cauchy’s mean
rotation in a sense that region of 7y should be (—, w]. They have also
shown that the restriction

det F > 0, (5)

for the determinant of two-dimensional projection F of F has to hold
if the deformation rotation angle has to be evaluated as a continuous
function on their deformation rotation circle.

Inspired by [4] Martins and Podio-Guidugli [6] investigated the
problem of measuring mean rotation in a complete intrinsic way, and
consistently solved it by formulae of an invariant character. Their ap-
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proach relied on implementing Cauchy’s concept of a rotation-angle
function, which, they proved, exists if (5) holds.

Obviously, in any case it comes out that if we want to calculate mean
rotation in a way that it makes sense we have to modified Canchy’s
definition of its measure. Keeping it in mind we propose the following
modified approach:

Let 7y is the angle between Ny and rotated ng of n upon the
Y Z-plane.

Definition: A mean rotation angle, denoted by xx. is the mean
value of Uy for all elements Ny in YZ-plane.

Making use of this definition we are going to show such a measure
of a rotation defines mean rotation in sense of Cauchy and Truesdell
and Toupin uniquely for each plane at X of B without any restriction.
From geometrical point of view, in calculating 4 for an element N which
belongs to a material plane 9 at X we first define its deformed element.
n in plane m, deformed configuration of 9. Then by rigid rotation of
m one obtains a plane mg such that mg || 91. This rotation of m as
well as all its elements n is defined by an orthogonal tensor R which
depends at given X of B on F and M, unit outward normal vector of
9. Then it turns out that 1 is defined for each element N in 9 by the
projection of "gradient” of deformation RF on 9. Since it is always
regular 7/ is well defined for all N in 9. The same is trme if we modified
our definition of mean rotation in accordance to Truesdell and Toupin's
suggestion. In a special case, which is discussed, we may calculate 1)
without rotating m into mg. Then v/ as well as y x is independent of R
since then R = L

The scope of the paper is the following. In Section 2 we give some
mathematical preliminaries we need to make the paper self contained.
Mostly we are concern with orthogonal projection operator —P? and
the properties of projected tensors of second order. Particularly we are
concerned with projection of gradient of deformation F and rotation
tensor R as well their product. In Section 3 we state the problem con-
cerning the angle ¥ for any element N in a plane 9 at given X of
B defined by its unit vector M which is also the axis of projection of
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operator —P?. In Section 4 we defined modified Truesdell’s measure
of mean rotation and calculate it. Then we discuss some special cases.
Also making use of this procedure we investigate the case when R=1
without rotating of plane m. In Section 5 we defined modified Cauchy’s
measture of mean rotation. Then we calculate the mean rotation angle
in two ways, geometrically and algebraically as it was done in [5]. We
also have proved that the mean rotation angle can be related to so-
called projection polar decomposition. Particularly it was shown that
modified Cauchy’s mean rotation angle, evaluated with respect to the
axes of rotation tensor Q in polar decomposition of gradient of defor-
mation F, is actually equal to the rotation angle of Q. In the Appendix
we derive formulas for some expressions, particularly det F, we needed.

2 Mathematical preliminaries

We include here the review of the concepts and notation employed
therein together with results to be used later. Whenever it is possible
our notations and terminology will closely follow that of [1] and [5].

The space under consideration will be always Euclidean space €.
Let a and b be two arbitrary vectors in €. Then a-b, a x b and
a ® b denote their inner (scalar) product, vector product and tensor
product, respectively. We use the term tensor as a synonym for linear
transformation from € to €. We call a tensor A symmetric if AT = A,
a skew-symmetric if AT = —A. We write TTA for the trace of A. A
tensor A is positive definite if

v:Av > (), (6)

for all vectors v # 0.
We denote by:
¢4(E,) = three (two)-dimensional Euclidean space,
Lin= the set of all tensors,

Lin* = the set of all tensors with S with det S > (),



60 J. JARIC and S. COWIN

Sym = the set of all symmetric tensors.

Skw = the set of all symmetric tensors,

Psym = the set of all symmetric, positive definite tensors,
Orth = the set of all orthogonal tensors,

Orth™ = the set of all rotations.

Particularly by M we shall always denote a unit vector.

Further, according to spectral theorem we may write

C=Z{diei®ei, (1:172.’3), (?)

for any C € Sym, where e; (i = 1,2, 3). are eigenvectors of C corre-
sponding to eigenvalues w; of C; they are orthonormal.

Also, it known that for any P € Skw there is a unique vector p
such that
Pp=0, Pv=pxyv, (8)

for every vector v. Vector p is called axial vector of P € Skw. For
unit vector p

T .
P’=p®p-1, (P’) =P? and P’=-P, P'=_P? P’—pP,
(9)
From geometric point of view —P? is an orthogonal projector on the
plane {p}* defined by p as its outward unit normal vector. Generally,
for any G, W € Skw, and their axial vectors g and w, not necessarily
unit vectors, we have

' 1
G‘W’:w@g—(w.g)lﬂqu:—aT?‘GW. (10)

We are going to use these expressions very often.

Definition 1:

v' = —p’v, A*=P2AP? (11)
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are the projections of a vector v and a tensor A.
From this definition and (9) trivially we have

a) The projection of a transpose tensor A is transpose of its projec-
tion i.e.

(A7) = (A",

b) The projection of symmetric (skew-symmetric) tensor A is sym-
metric (skew-symmetric) tensor, i.e. symmetric properties of a tensor
1s invariant under the projection.

Let (e, e, e;= p) be aright-handed orthonormal basis with e; xe;= p.
Then

A = Ajje; R ey, (12)

where the usual summation convention over repeated indices has been
adopted; here and further Latin indices will run from 1 to 3, and Greek
from 1 to 2. From (11), (12) and (8) we have

e b By
A={UU}, (13)

where by definition

i = AQIQEQ X E'g. (l—i)
For definiteness we shall call A a two dimensional projection tensor
of A in {p}*.

By definition A* is always singular althongh A or A a may be
regular.

Particularly

ot IR N o io
ne P_{U[}}’ (15)
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where T is unit tensor in {p} .

Definition 2: We call A and v projection invariant under the
projector —P? if

A" A, ond ¥ =v, (16)

Trivially P* = P, i.e. we say P is projection self-invariant.

Generally

(AB)* # A*B",

i.e. the projection of the product of two tensors is different from the
product of their projections. This immediately suggests a question:
When does (AB)* # A*B*? To answer this question we proceed with

Proposition 1.

(AB)* = A*B*$ (1?}
if the axial vector p of P is eigenvector of A or BT.
Proof. Necessity. Then from (17), (9), (10) and (11) we have
P’ABP? = P?AP’P’BP?,
= —P?AP’BP?’= —-P?A (p®p - I1)BP?,
= —P?Ap ® pBP’+P’ABP?= P’Ap ® pBP? =0,
= P?Ap=0, or P’B'p=0,
= Ap=op, or B'p=rp.
Sufficiency. Let Ap = op. Then

Ap®@p = Jp®p=}*A(I+P2)=ﬂp®p,
2y PzA(I+P2)=0:;~P2A=—P2AP2.

because of (8) and (9) and
(AB)* = P2ABP? = —P?AP’BP? = P’AP’P’BP’ = A"B".
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The same conclusion follows from BTp = 7p.

Corollary 1.

(AE) A (A*)Z: (18)
if p is eigenvector of A.
Of importance is also

Proposition 2: AP?=P?A if the axial vector p of P is an eigen-
vector of A and AT. Then
A* = —AP?=_P2A = _A'P? = —P?A". (19)

Proof. The first part of proposition. Necessity. From AP? = P2A
and (9) we have

Apop-I) = (p®p-1)A=Ap®p=pQA'p,
= Ap=}.p=ATp, (A=p-Ap).

Sufficiency. Then Ap = Ap = ATp so that

AP? = A(pp-I)=ApR@p-A=)pR@p—A,
— p@p-A=p3ATp-—A=(pep-1)A=PA.

The second part of proposition follows immediately from AP? =
P2A when one multiplies it by P2 from the left or side and make use
of (9) and (11).

Corollary 2: If p is an eigenvector of Sym or Orth then
SP?=P?S, or RP?’=P°R.

We are interesting mostly in the projection of F € Lin*. Then,
according to the polar decomposition theorem there exist positive def-
inite, symmetric tensors U, V and a rotation Q such that
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F =QU = VQ. (20)

Moreover, each of these decompositions is unique.
Corollary 3:

a) If p is an eigenvector of Q then

F-l: = QtU# i V*Q*, (21)
b) If p is an eigenvector of U (or V), then F* = Q*U*, (or F* =
v*Q*).
The projection of an orthogonal tensor is, generally, tensor which is
not orthogonal. Indeed, since RR" = I we have

R*(R*)" =I' — P’Rp ® P?Rp, (22)
where we made use of (9-11) and (15). From these and (22) we have

Proposition 3: Two-dimensional projection of R is an orthogonal
tensor in {p}*, i.e. RR" =Ton {p}” if Rp = p.

Proposition 4: Projection of a positive definite tensor A is a pos-
itive dcfinite two-dimensional tensor A in {p}*.

Proof. Since (6) holds for all v # 0 it also has to hold for any such
v e {p}", ie. for any v = —P2v. Then

0<v-Av =P VAP’ =vP’AP>v=v.A*v=v-Av.

for any v € {p}*,v #0.

3 Statement of the problem

Let X and x be the position of the typical particle X of a body B
with respect to the reference configuration and current configuration
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of B. The basic mathematical idea of a body motion is that it can be
described by a continuous point transformation

x=2(X,t). (23)

The requirement that the body not penetrate itself is expressed by
the assumption that Z be one-to-one. Then the fundamental kinematic
tensor F, underlying the local analysis of deformation, must satisfy the
condition

det F > 0, (24)

for all time ¢, i.e. necessarily F € Lin™ and the polar decomposition
given by (20) holds. We also need the right and the left Cauchy-Green
tensors C € Psym and B € Psym, respectively, defined by

C=U?=F"F, B=FF" (25)

At a given X we consider F as a homogeneous deformation. Then
the linear element dX at X is deformed into dx at x through the relation

dx = FdX, (26)
and
1
n=—FN, (27)
A(N)

where n and N are unit vectors of dx and dX, respectively

)’*{N}I vN - CN > 0, (28}

is the stretch in the direction of N. Let us denote by M and m the
unit. vectors of a plane 9 and m through X and x, respectively.

Proposition 5. Material plane 9 is deformed into material plane
m by F if
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M = uF''m, (29)

i.e. if M and F'm are collinear.

Proof. By proposition MM: M-dX = 0 and m: m-dx = 0 are material
planes. Then

O=m-dx=m:-FdX = F'm - dX,

and the proof is straightforward.

Corollary 4: Material planes 9 and m are parallel if FTm = vm,
[3].

Since F € Lin™ there is at least one real eigenvalue v which defines
unit normal vector m of parallel planes 9 and m. Moreover, the same

eigenvalues of F define invariant directions of deformation as well as
parallel planes, [1].

Let us denote by ¢ the angle between planes 9t and m as the angle
between their normal unit vectors M and m, respectively. If we rotate
m around the axis defined by the wunit vector t for the angle 4 (so that
rotated m is equal to M) we will obtain a plane my parallel to 90,
Fig. 1. Then the performed rotation is uniquely defined by the proper
orthogonal tensor R given in its canonical form

R=I+Tsint,-5r+T2(1—ms¢). (30)
where T € Skw, Tv =t x v, and

~ mxF'm
~ |m x FTm]|’

cosy=m-M, t
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m M dX
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v/ " Ly

n

ax

Fig. 1. Planes m and 91 and angles ¢ and 7.

Generally R depends on F and M or m since, by construction

M=Rm, and Rm=puF'm. (31)
where we make use of (29).

But.
MimeM=mesyy=0&R=L (32)

Obviously any linear element dx € m rotates by R into dxgz € mp.
Particularly, for ng, rotated n, we have

RFN

HR=RH=W,

(33)

Here and throughout the paper we keep in mind that if N € 9
then
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M-N=0< N=-P2N, (34)

where and further, until we say differently,

PP—MaM-L (35)

Generally

= (N : FTFN)% = (N-CN)Z = A(N)-

k=

FN| = (FN - FN)
But, because of (34),

1
Ay = [FN| = (N-C'N)? = (N-CN)?, (36)

where C* = P2CP? and its two-dimensional projection tensor C are
symmetric tensors. Moreover, according to the Proposition 5, C is
positive definite tensor in 9. Thc-n, by the spectral theorem,

C = Z"""’Jaen Res, wqa >0, (3?)

where e,, (a = 1,2), are orthonormal eigenvectors of C. The set
(e1, ey, €3 = e e2 = M) represents the basis of orthonormal vectors. In
that basis we write

N = cos ¢e| + sin ¢e,. (38)

Then from (35), (36) and (37) we have

ANy = \/;ul cos? ¢ + wy sin® ¢ - \/5«‘_1\/1 = (1 = 5’2—) sin® ¢, (39)
1

= \/“\/1 k2 sin® ¢,
B# gul” [ rmai=dl

W
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where, without lost in generality, we assume that w; > ws.

Next we calculate the angle between ng and corresponding N which
is, by definition, the angle of rotation 7 we are looking for. We may
calculate it from the expression

cos? = ng - N, (40)

By the virtue of (11), (20), (33) and (34) this can be expressed in
the form

cos1) = rl—N e I'N = LN o I'"N, (41)
A(N) A(N)
where,
I' =RF = SU € Lin™, (42)
and
S = RQ € Orth™. (43)

More convenient form of (41) is

1

(N)

cos1) =

TrI"N @ N. (44)

We are now in position to define a measure of mean rotation making
use of the angle .

Remark. In the case when
cos?? =0, or TrI’N®N =0, (45)

for some N. Modified Novozhilov measure of mean rotation is not well
defined as can be seen from (2). Since I'N 3 0 for any N it comes out
that in this case I'N must be orthogonal to N, or equivalently

I'N = aM + bPN. (46)
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4 Modified Truesdell’s measure of mean
rotation

Making use of Truesdell’s suggestion we introduce the angle 7 by the
following definition

i 1 2T
cost) = — / cos ) (¢) do, (47)
2m Jo

We call it modified Truesdell’s measure of mean rotation because of
the nature of the angle v (¢) introduced here.

So defined angle ¥ can be calculate since the integration in (47) can
be performed explicitly. To this end we first write

N®N=(_m.”’ "““f’mw), (48)

sin ¢ cos ¢ sin? @

in the basis (e,,e,); this follows from (38). Then from (47), (48) and
(44) we have

g 1 2n
cost = a—TrI‘/ LN@Nd@

2“ e| Qe cos® ¢ + es@es sin’ ¢5
= Tl /
2”\/_ ~.,.,r — k2sin® ¢

With the aid of the Legendre’s complete elliptic integrals of the first
and second kind, respectively, [7],

E (k)= /; \/] — kZsin® ¢pdg,  (49)

o [% da
oo \1-ksin?g

the above integral can be written as
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a)

W = Wy = W,

1 1
IrI™* =

3o zﬁTT(RF)*,

cos ) =

W = W

1
a9, /]

er¥e; — ej¥e
L2

K (k) ~E(K)]}
(50)

Cos

Trr™ {el®e1K (k) +

We now want to discuss some special cases.
I. The case a) above is special case by itself.

It is well known that an ellipsoid may be associated with any second
order tensor. Generally an ellipsoid has two central circular sections - of
cause in the case of a spheroid (ellipsoid of revolution) there is only one
central circular section whilst in the case of a sphere there is infinity
of such sections, [6]. It is of value to consider these central circular
sections because generally they have special identifiable properties. For
example, it may be shown, [8], that material elements in these planes
suffer no shear-the angle a (say) between a pair of material elements
before deformation is also the angle between the stretched elements
after the deformation. This follows straightforward from (37) and a)
since in this case

C= wi, (51)

where w may be related to the minimax stretch of C. Then it follows
that the angle between their rotated elements by rotation R is also a.
As a consequence of it he angle 1, given by (40) is independent of N.
so that

=Y
I

2, (52)
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which follows from (47). Its explicit formula generally cannot be derived
simply from (50), because of conditions imposed in Proposition 2.

But the is can be easily derived in two more specific cases stated
below.

Since U € Sym™ from (7) it follows that

U= Z AiC;®Rc;,

where ), are the principal stretches and unit. vectors c; are eigenvectors
of U. From (25) it follows that \? are eigenvalues of C. Particularly,
by definition,

W = wp = A%, (53)

i) If A2 = A3, then

U'= /\21 ()\1 — /‘\2} c; ®c,

and, from (50) and (52) it follows that

ol ;
cos ) = ETT‘ 457 % ) A (54)
for P2 = ¢, ® ¢, — I since P?c, = 0.
ii) If Ay = A2 = A, then
U = Al

and from (50) and (31) it follows that

cos?) = %TT‘ (RQ)", (55)

for any P? = p @ p — I. More specifically, for R = I

TrQ - | 8 (56)

2| =

cos? =Tr(Q)" =
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which is in agreement with [3].
Trivially, Q=I= R =1= cos? = 1.

IT. The case b) was investigated in [3] when S = I. Here we have
other possibilities but with the same form. These are the cases when
R =1 or Q = 1. In any of these cases nothing much can be simplified.

ITI. This procedure allow us the possibility to investigate the case
when R = I, but generally M # m, i.e. when the plane m is not
rotated at all, (see Fig. 2).

m M

m

yal

X

Fig. 2. Planes m and 91 and angles ¢ and ¢.

Then the angle, say ¢, between dx and dX may be calculate from
the expression

cosp=mneN, (57)

so that

mq_—i/%mqﬂibdd)
oape= o | oo (@)dd, (58)
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defines the mean rotation angle @. This two expressions are of the same
form as (40) and (47). Proceeding in the same way and applying the
previous results in this case from (50) we obtain

c)
W = W = W,
g 1 : 1 ) (59)
COS P = gﬁTT(QU] = 2\/JTT(F) ?
d)
W = wa
Cos @ = gﬂv/ileT (QU)" {e1®e; K (k) +
Re:—e®@
o TS il e )
Also, from (54) and (55), we obtain
cos? =Tr(Q)". (60)

5 Modified Cauchy’s measure of mean
rotation

Following the idea of Cauchy we may now introduce as a measure of
rotation about M-axis the mean value of the angles, denoted by ¥+,
through which all elements in R plane are turned relative to their
position in mg plane, i.e.

l .2-” 1 -
P* / D (®)dd = ~ / D (®) dd. (61)
27 Jo w Jo '
In order to evaluate 77* we proceed by applving the procedure given
in [4]. To this end we write



ON THE MEAN ROTATION IN FINITE DEFORMATION 75

I' =RF, (62)

and, by additive decomposition,

I'=1+7T+11, (63)

where Y € Sym and IT € Skw. We denote by h the axial vector of
I1. The projection of I' is given by the expression

PP+ T I, (64)

where Y* € Sym and IT* € Skw by the Proposition 1. Also, making
use of (7),

2
b B Z T mBL. T >33, (65)
a=l1
where T: and N, are eigenvalues and their corresponding eigenvectors
of T".
Then

N = N, cosvy + Ny sin~, (66)
with respect to orthonormal vectors N, such that N; x N, = M.

We start from the expressions

}*{N} COs 19 = N oI'N = NI“N,

A sin? = Mo (N x TN) = —N o PI"N, (67)

which follows from (40), (33), (62), (34), (11) and (8). These expres-
sions are identical in with (16) of [5]. The difference is in the meaning of
I", which is not generally gradient of I' deformation as it can seen from
(62). Having that in mind the application of the result of [5] in our case
is strait forward. for instance, substituting N e I'N and M e (N e I'N)
(see the Appendix a), into (67) we may write, after some calculation,
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2 (1) = Ay 0081 = 30 + R co52,

Yy(v) = Awysind = yp + Ry sin2y, (—-w<y<m), (68)

where

Ry =-(EP<E) = %v”zﬂ-(E*E) — (TrE*)?, (69)

o

1 1 1
R 1+—5(E;‘+E;]=1+5TTT*1+§(TTT—M-TM}2,

1 1
= 1B i (70)
1
yu =heM = —-TrPIL (71)

It is obvious that (68) are the equations of the circle on x — y the
plane with center at the point C'(z,,yn) and radius Ry;. Proceeding
in the same way as in [5], we write

Tycosxym =xn, Tysinxy = yum,
] 2
Tt = Tag + Yy = 1+§(TTT—M'M) + (he M)?, (72)

which enable one to write (68) in the form

A{N} cos {1‘} E XM') - R.M COs {2’-}{ & XM) '

)\[N} sin (Tr} T Xﬂ“f) = -—RJ'H sin (2'}!’ — ij) " (—1'[ < ¥ E ?T} : (T:j)

Let 26 = 2y — xu so that 6 = 0 corresponds to some 2y = y,,.
Then from (73) it follows that ?— xu, —7 < 9 — xr < 7 is an odd
function of §. Under this condition Zheng and all, [5], proved their
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Theorem 1: ¢
?t}m = XM; (74)

In this form it holds also in our case. Indeed,

e 1 *
0=> | (1a—xf,1)da=§ﬂ:9d5—x;,,:q: o

Making use of deformation rotation circle (68) in their case they
notice that if and only if

TM > Rm, (75)

which is equivalent to the condition

detF > 0,

the deformation rotation angle 1) can be evaluated as a continuous func-
tion on the deformation rotation circle. Otherwise, if Ty, < R),,, differ-
ent choice of fixed angular range of 1) will result in different mean value
of ¥2. This constrain never occur in our case. In fact we are going to
prove

Proposition 6: =
detT" > 0. (76)

for all M and t.

Proof. Making use of (34), (11) and (13) we may write (33) in the
form ng=An)N. From this and (28) it follows at once that det T' % 0,
i.e. detT cannot change the sign for any M and t. Without loss of
generality we may assume that at some time t; we have I' = I so that
[ =1and detT = 1. But then, detT >0 for all M and t. From (76)
and

detT =T% — R3,, (77)

(see for the proof the Appendix b)) the proof of (75) in our case is
completed.
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6 Projection polar decomposition and
generalized Cauchy’s mean rotation

In what follows it is helpful to use canonical form for S € Orth*

S =1+ Psinf + P? (1 — cosf). (78)

Its projection under the projector —P? is given by

S* = Psinf — P2 cos#, (79)

where we made use of (9) and (11). By means of (13) and (15) this can
be write in the form

S = Psinf + Icosé. (80)

By Proposition 3 it follows that two dimensional projection tensor
S of S is an orthogonal tensor on {p}". Notice that for given {p}"
tensor S is fully determined only by the angle of rotation 6. Also since
two dimensional projection tensor T of I is regular it has unique right
and left projection polar decomposition

I = 50 = V5, " (81)
where U and V are positive definite tensors and S an orthogonal tensor
on IN.

This turns to be very important in proving

Proposition 7: The angle of rotation ¢ of S, is equal to the modi-
fied Cauchy’s mean rotation angle 7.

Proof. Only the right projection polar decomposition (81) will be
used. We use (81) and (64) to obtain

Fr=SU=I+7+Il1 (82)

Substituting S into it we have
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' = Ucosf + PUsinf = I+ Y +I1, (83)

from which we get

T+T = TrUcosf =2+ TrY. (84)
Next, we multiply (83) by P on from the left side so that
PUcost — Usind =P +P Y +PI1,

and
~TrUsinf = TrPIL (85)

But from (9)-(11) and (13) we have

TrPI = TrP*IT* = TrPII = —2" « M. (86)

Also in the same way we obtain

TrY = TrY* = TrP*YP? = -TrP?Y =TrY —MeYM. (87)
Then from (83)-(87) it follows that

cos@ = TrT'/TrU = T /TrU, (88)

and

(Trﬂf =4 l(1 + éTTT)Z +(he M}E] ! (89)

From (88), (89), (70) and (72) finally we obtain 6 = x = ¥".

The Proposition 7 can be put in an other form. Indeed, by (13), we
may write (81) as
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=W =V
But from (78) and (79) we have

S=S"+p®p.

so that

¥ =81
since p ® pU” = U*p @ p = 0. Then we may state

Proposition 8. The projection I'* of T for a plane of projection
9N has unique projection polar decomposition

I*=SU"=V'S, (90)

where S is modified Cauchy’s mean rotation tensor, its axis of rotation
defined by the unit outward normal vector M of 90, and the rotation
angle equal to modified Cauchy’s mean rotation angle 7*. Two dimen-
sional tensors of symmetric tensors U* and V* are positive definite on

M.
From (20). (42), (43), (11) and (90) we have always

' = (SU)" = (VS)" =SU* = V'S, (91)
although, generally,

S#S, U'#U* and V£V
as may be seen from the Proposition 2. Only in a case given by Corol-
lary 3a) the sign equality holds. Then we may state

Proposition 9: The finite rotation tensor S in polar decomposition
of tensor I' can be interpreted as the modified Cauchy’s mean rotation
tensor with respect to the rotation axis of S.

This is equivalent statement given by the theorem 4 in [5].
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Appendix A

1 1
1 1
=19 QTT‘F* s (Ef — E3) cos 2y,

1 1
= 1+ §(TTT —~MeTM) + 5 (E] — E3) cos 2y,
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Me(NxI'N) = I'Ne(M xN)=INePN = NePI'N,
= —NPI"N = -NPY*N - NPIIN

1
= h-M—i(E;‘—E;)Sin?}r,

where we made use of (62)-(66) and (8).
Appendix B
To calculate det. T we start from (64), i.e.

I'=I"4+ 7" + IT".

From this and (13) we have

F=I+7+II
But by Cayley-Hamilton theorem

gt (T?‘[-‘) e (det. I_") I=0,

from which we obtain

det T = I(Trf‘)z - Trf‘z} ;

o] =

Since
M=I+27 +2I0+ 07 + T + T2 + 12,
then

TrI? = 2 4+ 2TrY + TrY? + TrI1,

where we make use of the fact that 7+T1 = TrYII = T+IIT = 0. Then

we may write
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detTC=1+4+TrY + = 5 [(TTT) — T?‘Tz] — %T’rﬁg.

Now making use of (9)-(11) we obtain

T?"ﬁz == TTn*zzTr (PEH)2=
= Tri(M@M-T)II’ = - 2(he M)?,

and finally,

= 5, 2 A4
detT=(1+ JTr Y) (e M)~ {2%1‘ -(1r %) ] Th, -
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O srednjoj rotaciji konac¢nih deformacija

U radu se definie ugao srednje rotacije deformabilnog tela. Dalje
se pokazuje kako se ova definicija moze koristiti za odredjivanje srednje
rotacije deformabilnog tela u smislu Cauchy-ja i Truesdell-a i Toupin-a
bez ikakvih ogranic¢enja.



