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Abstract

The paper presents an analysis of brachystochronous move-
ment of a conservative system during the action of holonomous
relations. More precisely, it deals with solving the assignment of
moving a system on a configurational manifold from one given
position, where it remains at rest, to another given position,
for the shortest possible time. The differential equations of this
movement are formulated, and several special cases are ana-
lyzed. The geometrical characteristics of the regions of the pos-
sible brachystochronous movements are also indicated.

1 Introduction and basic assumptions

We consider a mechanical system (M, L); M - n-dimensional configura-
tional manifold, L - Lagrangian, differentiable function defined at the
fiber bundle TM

EHPNCA R S B R (1)

where the indices denote the homogeneity degree in relation to the
generalized velocities. We shall solve the following
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Assignment: Define curve ¢ : I — M (I C R time interval) along
which the system should move so that from the state of rest in location
a it comes to location b for the shortest possible time.

We call curve ¢, which represents the solution of this assignment,
the brachystochrone of the system (M, L), while the movement along it
will be called brachystochronous movement. For the movement of the
system given by the Lagrangian L the first integral holds, i.e.,

Lg - L, = h,

which can be written in the form

T-U=0, (T=LIs U=L,+h). (2)

According to the above, the assignment of defining the brachys-
tochronous movement represents the problem of optimization in rela-
tion to transporting of system (1) from the location a to the location b,
under the restriction given by integral (2) and the additional condition
on the left-hand side. It can be formulated in the following way:

J (c(-),t) = Jydr — inf,
c€ {v:[0,] » M|T (v,4) - U () = 0} ,%(0) = 0.
Let us denote the local chart on M with = = (z,,...,2,), and the

time coordinate with ¢ € K. The local chart at the fiber bundle are
(x,&), @ = dx/dt. Integral (2) in the local chart is

a;; (z)i'%’ —2U (x) =0, 4,j=1,..,n

If we perform the substitution of the parameter ¢t — s (t) with the
strictly increasing function s : R — R, s (0) = 0, we shall obtain

2
a;; (z) z"z"” (%) —2U (z) =0, 2z’ =dx/ds. (3)
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In that way, the assignment gets the form

1/ () 2fig’d \ 3
(aﬂ (z) &"x )zds—afinf, (4)

T = [ (*gm

0
(the multiplier 27'/2 has been omitted, since it does not affect the
solution of the assignment). We can notice that the subintegral function
is a linear form along z’, wherefrom it follows that integral (4) does not
depend upon parameterization. Therefore, the integral limits can be
considered to be fixed. In order to formulate the assignment correctly, it
is necessary to select the region of the functions in which the solution is
searched for. We shall select it in the following way. Let us denote with
0, the set in parts of smooth functions' which satisfy the conditions
5(0) = a, 5(1) = b. It is possible to complete this set into an infinitely
dimensional manifold, which will also be denoted with £2,,. The curve
on the manifold ,; is a differentiable homotopy

c:[0,1] x (—e,€) = M; c:(s,a)—c(s,a), (5)
for which the following holds
c(0,a) =a, c(l,a)=0>b, Vace (—¢e)),

c(s,0)=c(s), Vse]0,1].

The tangential vector on (2, in point c(s) is a vector field along c(s)
which is annulled in points a and b:

XEETGIE}M, X, =X;=0.

As a brachystochrone, in the sense of the definition given above, we
shall consider the curve from Qg upon which the functional (5) has the
weak minimum.

!in sense of definition [1]
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2 Necessary conditions

If the curve ¢(s) = ¢(s,0) is the point of the weak local minimum of
the functional 7 (c(-, @)) upon Q,, then [1]

;{; [azlj (C{*, ﬂ)) = 0.

From this condition and from Hilbert’s lemma, it follows that ¢(s)
is a continuous differentiable, and that it satisfies Euler-Lagrangian
equations. For the functional (4), these equations are

d aij-.r’*? 1 Faﬂr‘?k -’_? - 3U ke .
ds VFOie Spp (b B o g A (6)

where, for the sake of brevity, we introduce the designation

1

. (Uﬂ,‘j . .‘?TIJ) 2

When T is a positively definite square form on T,M for Vp € M.
the coefficient of the form can be taken as the metric tensor field. The
manifold M metricized by the tensor field a;;(x) represents Riemann’s
manifold upon which Levi-Civita’s connection can be defined, the coef-
ficients of which I';, (T';; x) represent Christoffel’s symbols of the I (II)
kind. Then, Eqs. (6) obtain the form

1" ooy 1 19 el et JG ol 1 U . t
I +FJ,_,;1?".’E;‘— |:ﬁ (ij‘f’fjl 'IL.".I_JI-|-1:‘1“J Jl L)+@@IH}T B
o
U" oz ’

(2T = a2 0%,
(7)
The above equations determine the brachystochronous movement

trajectory, while the movement itself is obtained as the complex map-
ping x(s(t)), after s(t) has been calculated by inverting the function

t(s).
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Example. The equations of the brachystochrone in R?. In Eu-
clidean space the system of the coordinates can be selected so that all
I, = 0. In that case, Eq. (7) is reduced to

gl

T b . 5 WP Y, )
i | i i — =0:
% ( T e ) U o

S s
%> _{ 1, i =j.

If there exists a cyclical coordinate, for instance x2, the previous
system is equivalent to Eq.

" = 1 aU
1+ (2)®  2U Oz

=0 [z« =dz [ds )

which has the first integral [1 + (:1:’)2] U (z) = const.

3 The brachystochrone upon a
two-dimensional manifold

Let us consider a system with two degrees of freedom. Let us designate
the local chart upon a configurational manifold with 2! and z?, and
presume that 22 is a cyclical coordinate. We shall search the equation
of the brachystochrone in the form x; = f(x3). From (3), taking into
account that

we obtain
a2 r - 2
(au ()" + 2a,22] + ﬂzz) o — 2U = 0.

The functional (4) is of the form
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Lﬁ{ml,m’l)drg,

where

1/2

o f O (-Ti)2 + 2a,57) + ap
20U

Euler-Lagrangian equation in this case has the first integral

oL
oz

2y — L=h,

wherefrom the equation of the brachystochrone is obtained

(2:’120’&“ - a;:;'z) (] )* + 2013 (2:‘:.20' - am) T + (2h2U - azz) as = 0.

(8)

According to the above, the assignment is reduced to solving the
differer tial equation of the form

o () (@)’ + 2 () 0 () v (z) = 0

which is known in the literature (E. Kamke, DIFFERENTIALGLE-
ICHUNGEN).

Example. A material point moves along a smooth rotational sur-
face in the force field which is invariant in relation to the group of rota-
tions around the axis of the surface symmetry. If the axis of rotation is
designated with O, and the rotation angle with ¢, the equation of the
curve the rotation of which forms the surface is of the form p = p(2) (p
- distance between the point and the axis of rotation). Then,

T-U=g(2)2"+g2(2)¢" = U (2) =0,
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dp ’
(gl=1+(¢;)1 9==p2)-

Coordinate ¢ is cyclical. The solution in the form 2(y) is obtained
from Eq. (8), which, in this case, is reduced to

scfosyosi-s. (7-8)

After the final equation of the brachystochrone has been determined,
the brachystochronous movement is obtained in the following way:

2 . ok AT 1
pw=c¢f=5/ﬂ plz(0)]df = —@(p) = p=0(t).

In a special case, when p = a = const. (the rotational surface is a
cylinder), the equation of the brachystochrone reads

2c%U (2) (2% + o) = o,

i.e., the same as in R2.

4 The region of possible
brachystochronous movements

From the condition that the brachystochronous movement is expressed
by (2), whereby T'(z,z) > 0 we find that the region of possible move-
ment. 18

D={zeM|U(z)>0}.

When minU(z) < 0, the region D represents a manifold with an
end. We shall consider some characteristics of the region D for this
case.
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Suppose that the region boundary is smooth

grad U (z) #0 for z€8D (8D #0).

It follows therefrom that the mechanical system has no equilibrium
positions upon dD. The problem of determining the brachystochrone
is reduced to solving the assignment

o 13 : %
[ (gi-j:r"x”) ds - min, Y€ Qu, ¢ =a;/U(zx).
Sy

The field tensor g;;(z) defines Riemann’s metrics on int D (the
restriction of the functions a;;(z) on int D and g;;(x) belong to the
same conforming structure). On 9D field g;;(x) is not defined. When
r passes sequence (z,) € int D, which converges to a certain point on
0D, gij(z) — oc (n — o).

Let Q. denote the set of all continuous curves on D which connect
points p and ¢ (the set is not empty with arbitrary selection of points
p and ¢, since we consider D as a connected set). Let us define the
mapping of d: D x D — R by the formula

SR
d(p,q) = inf / (yu-r":r”) Pds, v€ Q. (9)
Sy

Lemma 1 Mapping d is the metrics upon D.

Proof. Among the conditions which d must satisfy in order to be
the metrics, we take that it is necessary to prove only one: d(p,q) =0 =
p = q, since the others are obviously satisfied. If p and ¢ from int D,
this implication can be proved in the familiar manner [1]. Suppose that
p € 8D and q € D. Let v be a continuous curve which connects points
p and ¢, and which does not wholly lie in @D (it is clear that such a
curve always exists). Let U be the neighbourhood of point p in set D
and let (U,%) be a chart on the manifold selected in such a way that
Y(p) =0, Y(m) = (z',...2"), m € U. Let us parameterize curve v so
that
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’T:SH‘T(‘S)! SE[0131]$ ‘T{O)=p1 'T(-Sl)=q

Then

d(p,q) = [f (gu-’-‘f"‘::‘ff"j)”2 ds = fn : (95 07) I’iz’j]lﬂdS- (10)

Since g;j(x) is a positive definite tensor for each = € intD, there
exists the neighbourhood V' C U of point p and £ > 0, so that the
following inequality holds:

1/2

(11)
Let us use s, to denote the upper limit of those values of parameter
s for which v(s) € V. Taking into account (10) and (11), we have

(gijrnxu)uz g [{ 7",5{(1" GT) <2 i gt ‘r',d(.:r“o'y) }2]

d(p,q) = s/; [«:: '}f’,d(mloq) >2 4ot <o, d(2" 0) }E]Uzdg
o d(’.ﬂja'}") a i
3 E.L. " ds Smi’d(m OT)}G{S
= d(p,q) > ¢z (s)|, Vi.

which proves the lemma.

We can notice that the point after which the brachystochronous
movement commences must lie upon dD. If 9D does not contain the
equilibrium positions of the system, there exists the region B = {z ¢
D|0 < U(z) < €} (the boundary 6D) in which point z(t) cannot
remain infinitely long [2], (the so-called rejection neighbourhood area).

Theorem 1. Let points a and b be from int D, whereby b € B.
There exists a brachystochrone which passes through points a and b.
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Proof. According to Hopf-Rinow’s theorem, there exists a unique
geodesic line 4 which connects points a and b. We are going to show
that this geodesic line can be extended up to a point on 9D, which
means that it represents a brachystochrone through points a and b.

Function d(-,m), m € @D is continuous and limited from below.
Therefore, the mapping 9(:) : dD — R* (the distance of the point (-)
from OD) can be defined by the formula

9 (b) := infd (b,m), m € AD.

Since b can be selected such that 9(b) < é (6 > 0is arbitrarily small),
basing upon the theorem on the possibility of the local lengthening of
the geodesic line [3], it follows that v can be lengthened up to its cutting
point. with dD.

Let us now consider the movement along the brachystochrone. The
commencing conditions are z(0) € dD, z(0) = 0. From the assumption
that there are no equilibrium positions on system dD, basing upon the
existence of the rejection area, it follows that z(¢) must come out. from
some neighbourhood of point x(0) for a definite time. The brachys-
tochronous movement between points (0) € 8D and a € D will exists
if there are no stopping points on the corresponding brachystochrone,
which must be specially analyzed.
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Brahistohrono kretanje na mnogostrukostima

U radu se resava zadatak odredjivanja glatke krive na konfigura-
cionoj mnogostrukosti konzervativnog sistema po kojoj bi reprezenta-
tivna tacka trebalo da se kreée da bi iz stanja mirovanja u zadanom
polozaju za najkraée vreme stigla u neki drugi, vezama dopusten polozaj.
Takvo kretanje se zove brahistohrono.

Odredjeni su potrebni uslovi brahistohronog kretanja na konfigu-
racionoj mnogostrukosti i posebno razmotren slucaj dvodimenzijske
mnogostrukosti. Ispitane su neke geometrijske karakteristike oblasti
mogucih brahistohronih kretanja.



