THEORETICAL AND APPLIED MECHANICS
22, pp. 91-101, 1996, UDK 517.97

Optimal control of the system with
subdifferential material law

Ivan Sestak

Submitted 27 November 1995

Abstract

In this paper the following problem is considered: find such
loading on the path of boundary I' of the body (2, as near as
possible to the desired value Fjy, such that some linear trans-
formation of the displacement field u take desired value h in a
certain Hilbert space. The existence result of the optimal load-
ing is given as in [4]. The weak formulation of the problem is
in the form of variational inequality because of subdifferential
form of the constitutive law in considered system. The existence
result of the variational inequality is given as in [3].

1 Introduction

In this paper the mechanical problem is considered where weak formu-
lation of the problem is in the form of variational inequality (principle
of virtual work in inequality form) [2], namely, the subdifferential form
of the constitutive law, stress-strain law, give rise to have a variational
inequality as a weak formulation of the problem. the constitutive laws
of the form: o € 0w (¢), (see [2],[3]) describes Hooke’s elastic mate-
rials, the elastic workhardening materials, the elastic-ideally ”plastic”
materials (Hencky's theory), the materials obeying the law of the de-
formation theory of plasticity and the elastic locking materials, [4].
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92 1. SESTAK

For the existence proof compactness arguments combined with mono-
tonicity arguments are use (see (2], [3] and [5]). As for optimal control
problem we concern a standard formulation: we minimize the difference
| Mu — h ||3,, where Mu is linear transformation of the state variable
and we add the term || F'— Fj “Er for the controls. The existence results
for optimal control problem is given as in [4].

2 Variational formulation of the problem
and existence result

Let 2 be an open, bounded and connected subset of B* which is occu-
pied by a deformable body in its undeformed state. Let I be boundary
of 2 which is assumed appropriately regular ( e.g. a Lipshitzian bound-
ary). Let 0 = {0;;} (resp. € = {¢€;;}), 1,7 = 1,2,3, be the stress (resp.
strain) tensor and let f = {f;} (resp. u = {u;}) be the volume force
(resp. displacement) vector. Let n = {n;} denote the outward unit
normal vector to I'; S; = o;;n; (summation convention) are boundary
forces. We assume that the boundary is divided into two disjoint open
subsets ['y; and 'y, i.e. I' =Ty U Tp.

In the framework of small deformations and nonlinear monotone
elastic behaviour of the body 2 we consider the following problem:

Find u such that
[ 045+ fi =0, in {2,

ZEiJ— = Uy 4 e Ujq, N ﬁ,

{ o€ dwle), in , (1)
u; = U! on FU]
L ,5'1: — 'Fia on FF.

Here the comma denotes differentiation, @ is the subdifferential of con-
vex analysis [2] and w (-) is a proper, convex and lower semicontinuous
(Ls.c.) functional on R® (see [2]).
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The appropriate expressions of w which correspond to the law in

(1) are discussed in [2].

Let us assume further that u;, v; € W' (Q),p > 3; F; € L*(Tr),
fi € ¥ (), p = p/ (p— 1) (see [1] for definition of Sobolev space), and
let (-,) denote the duality pairing between (L7 (£2))™ and (Lp' (Q))
for any m.

The set of kinematically admissible displacements of the points of
the body  is defined by

V, = {1{; € (W”P (ﬂ))a | v=0o0n 1"{;} L (2)

Multiplying by (v; — u;) equilibrium equation in (1) and integrating
over Q) (the Green-Gauss theorem is used) the following virtual work
equation results

Jo o5 (€55 (v) — €5 () dQ = [ fi (vi — w) dQ + Jr,, Fi (v — ws) dT,
Yo € V,.

(3)

Relation o € dw (€) is equivalent to the variational equation ([3])
w (€ (v)) — w (e (w) > 0 (€5 (v) —&; (w), Ve(v) €R%.  (4)

Further we define the convex, l.s.c. and proper functional W (-) on
(L? (2))°, by the relation ([3])

_/nw(f)dﬂ. if w(e) € L' (Q)
W (e) = )

+o00 otherwise.

For 0;; € I7 (Q) and ¢;; € L () the relation 0 € dw (e) is the
, 6
extension to (L7 (2))° x (L” (Q)) of the relation o € dw (¢) , if this
holds a.e. in  ([3]).

The functional W (¢) have the same properties as w (€) .

After Egs. (4) and (5) variational equation (3) become variational
inequality, 1.e.

W(e(v)—W(e(u)2l(v—u), Yvel,,
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where

—-—ff,;u,;dﬂ%— F,-u,;dl".
0 I'e

Then we consider the following problem:

Find u such that
W(e(®) - W(e(w) 2 1v—u), VeV (6)

Here we consider the case when the functional w (¢€) is not differen-
tiable everywhere. In this case ([4]) a sequence of convex differentiable
functionals w, depending of the parameter p is considered such that

(1) As p— 0

fw,, ) dQ — W (e (v)), Vo€V, (7)

(22) If v, — v weakly in V, for p — 0 and [, w, (e (vp))d2 < C,

then
llmmf[wp (1v,))dQY > W (e (v)), (8)

(iii)
(grad W, (¢ (v)) ,¢ () 2 C [ (e () 0)Ed2,  (9)

where (' is independent of p.
Now we define the regularized problem:
Find u, € V, such that

(grad W, (e (u,)) ,e(v)) =1(v), Vv eV, (10)
In order to discretize (10), let us consider a Galerkin basis {w;} of

V, and let V,, be the corresponding n-dimensional subspace. Then we
define the following problem:

Find u,, € V,, such that
(grad W, (e (upn)) ,€(v)) = L(v), Vv €V, (11)

The following proposition holds.
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Proposition 1 If w, satisfied (i), (ii) and (iii) then the problem (11)
has a solution. :

Proof. According to the trace theorem of Sobolev spaces and (i)
el < C, (12)
where C' is independent of p and n. Thus, as n — oo
Upn — U, weakly in V, (13)
We also have, that as p — 0
u, = u weakly in V, (14)

From (11) we get that
"g‘[’ﬂd WP ('E {uﬂ‘ﬂ-))” (Lp’(ﬂ])ﬁ E CT (15)

where C' is independent of n and p and thus as n — oo
’ 6
grad W, (€ (upm)) — ¥, weakly in (L¥ (Q)) . (16)

From (11) we obtain by passing to the limit, n — oo, the variational
equality
(P,,e(v))=1l(v), YweV,. (17)

Further, let us form the nonnegative expression

= (grad W, (¢ (upn)) — grad W, (€ (w)) , € (upn) — € (w)) 2 0,
Yw € V,,
(18)
which by means of (11) becomes
Xn =1(upm) — (grad W, (e (w)) , € (upn) — € (w))
— (grad W, (e (upn)) € (w)) 20, Ywe V.
Due to (13), (16) and (17) we have that Yw € V, as n — o0

lim Xn = 1(uy) = (¥,,¢(w)) - (grad W, (e (w)) , € (u,) — € (w))

= (U,,€(u,) — € (w)) — (grad W, (e (w)) , € (u,) — € (w)) > 0.
(19)
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Here we have also used the fact that
¢ (upn) — € (u) weakly in (L7 (Q))°,

because Korn’s inequality implies that € : u — ¢ (u) is continuous linear

function from (W'? (Q)) into (L (2))°.
Now we apply the monotonicity argument or Minty’s argument:
Let us set in (19) € (u,)—€ (w) = Ae (0) , A > 0. We get the expression
(¥, — grad W, (e (u,) — Xe (0)),€(0)) >0, VOeV,. (20)
Due to the monotonicity of the function
A — (grad W, (€ (u,) — Xe (0)) ,€(0)), VO €V,
we may take the limit of (20) for A — 0 and find

(¥, — grad W, (c (u,) ¢ (6) >0, VO €V, (21)
Substituting # = +v in (21) we get
U, — grad W, (€ (u,)) . (22)

Further we take the limit with respect to p. From Eqs. (17) and (22)
we find, due to the convexity of w,, the relation

fn (w, (€ (v)) — wy (€ (w,)))dQ > L (v —u,), YweV, (23)

Let us choose in Eq. (23) a v such that W (e (v)) < oo. Then due to
(7)
f w, (€ (v))dQ < C,

and (23) implies that
fn w, (€ (u,)) dQ < C. (24)
Therefore due to Eq. (14), Eq. (8) holds. From (23) we find
11m mff w, (€ (v))d2 > llmlnf [f wy (€ (u,))dQ — 1 (v — u,)] ,

fﬂr every v € V,,with W (e (‘U‘)) < o0. But from (7), (8) and (14) we
conclude that inequality

Wew@)—Wi()=>2l(v—u), YveV, withW (e(v))< oo,
is satisfied by u € V, with W (e (u)) < 00.O0
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3 Optimal control problem

Let F' = {F;} on I'p be the control variable and U = (L? (FF‘))3 - the
space of the controls. Let admissible set of controls be defined by

Ua = {F & (12 Tm)* | 1F - Folly < K}, (25)

where Fjy € (Upy) is given.

With every control F' € U, we associate the cost functional J (F)
by

T(F) =2 IMu— b+ SIF = Fally,  a,8>0, (26

where M € L(V,,H) is given operator and H is a Hilbert space of
observations; h € H is given.

The optimal control problem for the variational inequality (6) is
defined as follows:

Find F* € U, such that
F(F")Y ST 1 4 MEE Up. (27)

The following proposition holds ([5]).

Proposition 2 For the problem (27) exists al least one oplimal control
F* € Us.

Proof. Let I'(") be a minimizing sequence in Uy, i.e.

J(F™) - J, = inf J(F), (28)

FelUg

and let u™ = u (F"{"}) be the solution of (6). By (26) and (9) the
sequences F™ and u™ are bounded, i.e., "F':“}| g < C and nufﬂl“v =

C. Accordingly, we may extract subsequences F(™ and u(™ such that

F™  F weakly in U, (29)

u™ S G weakly in V. (30)



98 I. SESTAK

Since U and V,, are convex and closed sets, they are also weakly closed,
and thus ' € U, and @ € V,. We must prove that I and 4 satisfy
variational inequality (6), i.e. that @ = (!’) :

If we form the system (u in (6) is replaced by u(™)

W () = (f,0) = (F,0) >

F

W ((. (u{"‘»‘)) - (f,'u.‘"‘]) —~ <F':”‘]Tu':'"]>r % POE Wy
> (31)

After Weakly Ls.c. of W (e (v)), the Sobolev trace theorem (W7 (Q))
— (L1(Tr))*, ¢>1([1]), and (29) and (30), (31) become

W (e(v)) — W (e(@)) > (f,v—a) — (Fv— )., Vo eV, (32)

which means that & = @ (F). Now it will be proved that F' is the
optimal control which was denoted by F*. Functional .J (F) is weakly
Ls.c. in U/ and hence

lim inf J(F®) > J(F). (33)
But
lim inf .J (F™) = jnf J(F)=J(F*), (34)

and thus .J (F) = infpey, J(F) = J(F*), and we may take F' = F* in
the proposition.O

4 Regularization of the control problem

Here, we replace the problem (27) by the problem:
Find F,; € Uy such that

J,(F;) < J,(F), VFeU, (35)

where

Jﬁ 1]
Jo(F) =5 |\ Mu, (F) = hli3 + SIF = Boll};,  @,8>0, (36)
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and u, (F') is solution of the problem (10).
The following proposition holds ([4]).

Proposition 3 There erists at least one solution F,;, u, of (85) and
(10), respectively, and as p — 0 there exisls a subsequence denoted by

F; again such that

o strongly i Up, (37)
u, (F}) = u(F*),  strongly inV,, (38)
LA S IF). (39)

Proof. The solutions F;, u, exists by the proof of proposition 1,
and proposition 2, respectively. By proposition 1 we have

I, () — (), as p — 0, YF € Up. (40)
Hence
Jo (F3) S Jp (F*) = J(F?*) = Jnf J(F), (41)
and thus
limsup J, (Fy) < J(F*). (42)
But,
i [ 8 2
Jp (FP) & 2 HFF’ i FB"U ! (43)
and thus ‘ = is bounded. Accordingly we may extract a subsequence

denoted again by F, such that F; — F, weakly in U; F; € Uy because
[/ is weakly closed.

It can be proved by taking the limit in the variational inequality
(10), that .

u, (Fy) —u(F;),  weaklyinV,, (44)

and thus
liminf J, (Fy) > J (Fy), (45)
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which together with (42) gives I'* — [I'? and (39) is proved.

We have for p — 0 that
lim 7, () = lim [ (Mu, (F}), Mu, (F})), + g (Fas3)

—< (Mu, (F3),h), + Ipl3] = 7(F).,

and from (40) that
hmJ, (v)=J(0). (46)

jr—+0)

Moreover, there exists constants ('; > 0. C, > 0, such that
CollFIZ < (M (u(F) = u(0)) . M (u(F) = u(0))),

(47)
SR Gy 117, . YEF el

which means that
(M (uw(F)=u(0) .M (u(lF)—u (0))),, + (B/2) (F, F),;

1s a norm equivalent to norm [/, . Accordingly, from (46) and (47)
it results that already obtained weak convergence in (37) and (38) is
indeed strong convergence.
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Optimalno upravljanje sistemom sa subdiferencijalnim
materijalnim zakonom

U ovom radu se razmatra sledeci problem: odrediti opterecenje na
jednom deln granice I tela £, sto blize Zeljenom opterecenju Fj, tako
da odredjena linearna transformacija polja pomeranja u dobije Zeljenu
vrednost h u odredjenom Hilbertovom prostoru. Egzistencija resenja
optimalnog opterecenja data je kao u [4]. Slaba formulacija problema je
u ublikn varijacione nejednakosti zbog subdiferencijalnog oblika konsti-
tutivnog zakona u pusmatranom sistemu. Rezultat egzistencije resenja
varijacione nejednakust.i je dat kao n [3].





