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Abstract

In this paper the equation of a laminar uniform one-dimen-
sional free surface flow for a Herschel-Bulkley fluid is derived.
On the basis of the equation, an expression for Darcy-Weisbach
friction factor is defined and the extended Reynolds number
is introduced. Using results of experiments carried out using
water-kaolinite clay mixtures with different solid concentrations,
the friction factor is estimated for the Bingham and pseudo-
plastic models. Results are compared with theoretical values.
Accuracy of the friction factor estimation is also given.

1 Introduction

When the frictional resistance to a non-Newtonian fluid flow is consid-
ered, the analysis of the fluid rheological properties plays an important
role. For the rheological model adopted, an expression for the friction

factor can be derived, based on the laminar flow equation. However,
21



22 D. KOMATINA

it is not easy to decide what rheological model to apply, even for the
same type of material. Mixtures of water and clay, that are a subject of
investigation in this paper, were previously modelled most commonly
by a Bingham model, [1] -[7]. At extremely low shear rates, the pseu-
doplastic model was suggested, (2], [8]. Recently, the more general
Herschel-Bulkley model was applied, [9].

In order to obtain a relationship between Darcy-Weisbach friction
factor Reynolds number, various concepts were performed for a Bing-
ham fluid. When using the standard Reynolds number formulation,
from the equation of laminar uniform one-dimensional free-surface flow,
a non-linear dependence of the friction factor on Reynolds and Hed-
strém numbers was defined, (see [7], [10] and [11]). Applying the coef-
ficient of ”effective viscosity”, Hedstrom number is eliminated, so that
the friction factor depends only on the Reynolds number. This ap-
proach is widely used by Chinese researches, (see [4], [10] and [12]).
From the equation of laminar uniform one-dimensional free-surface flow
of Bingham fluid, an extended Reynolds number was defined so that the
standard Moody diagram, (valid for Newtonian fluids), can be applied
without any modification for the friction factor estimation, [13].

Based on the concept given by Ogihara and Miyazawa, [14] and
[15], for the pipe non-Newtonian flow, the extended Reynolds number
formulation for a Herschel-Bulkley fluid is introduced in this paper, the
definition being easily simplified to both Bingham and pseudoplastic
models. Using results of experiments carried out using water-kaolinite
clay mixtures with different solids concentrations, the friction factor is
estimated for the Bingham and pseudoplastic models, and compared
with theoretical values. Accuracy of the friction factor estimation, de-
pending on the rheological model chosen, is also given.

The turbulent non-Newtonian flow is associated with much smaller
difference in the friction factor (with respect to the water flow resis-
tance) then in the laminar flow regime. In a turbulent flow over smooth
boundary the friction factor follows Blasius formula, and for the fully
turbulent flow a Colebrook-type flow resistance equation can be used.
It is noted that a thick mixture easily enters the transitional zone, and
is much more difficult to achieve the fully turbulence than a water flow,
the transitional zone being much wider than in a Newtonian flow.
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The turbulent flow resistance is not considered in this paper, but
reader is referred to papers [4], [7], [10], [12], [16] and [17].

2 Rheological modelling

Rheological properties of a non-Newtonian fluid in the laminar flow
regime can be described using Herschel-Bulkley model in a wide range

of shear rates, [9]. For a point of the fluid analyzed, the model is
described as

du
Et.— = O'r T S TC?
7 20" } (1)
¢ gl 1 L 0 )
Ndt s

where u is the flow velocity (m/s), y - flow depth (m), du/dt - shear rate
(s71), T - shear stress (IN/m?), 7, - yield stress (N/m?), n - coefficient
of rigidity (Ns/m?), p - coefficient of viscosity of a Newtonian fluid
(Ns/m?), and m - flow behavior index (dimensionless), see Fig. 1.

The above equation is somewhat modified when considering a finite
volume of a fluid, so that a constant, depending on the flow geometry,
is introduced. In the following text, the integral-type of the equation
is considered.

Substituting m = 1 in equation (1), the Bingham model is obtained,
while taking 7. = 0 and m < 1 gives the equation of a pseudoplastic.
Rheological parameters 7., n and m are estimated experimentally by
rotational or capillary tube viscometer. The illustration of the param-
eters estimation procedure follows.
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Fig. 1. - Shear diagram of a Newtonian and non-Newtonian fluid.
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2.1 Rotational viscometer

Consider a fluid laminar flow in the annulus between two concentric
cylinders of a rotational viscometer, the inner cylinder, (usually re-
ferred to as the "bob”), is rotating while the outer, (the ”cup”), is held
stationary (”Couette” type of device). The angular speed of the rotat-
ing cylinder Q (s7!), and the torque applied to stationary cylinder M
(Nm), are measured, and then the shear stress 7, (N/m‘?), and the
shear rate y (s™') at the bob surface are calculated, (see [18] - [20])

M
R (f)e 2rimh’

(2)

20
S -
el
T
where h is the bob length (m), r; - radius of the bob (m), and 7y radius

of the cup (m).
The angular speed of the rotating cylinder €2 can be described as follows

sz';ndw=]:%(%)dr, (4)

where w (s7!) is the angular velocity at the radial distance r. For the
geometry described, the following relationship holds

(3)

"‘Ir‘=

du du dw
dy dr dr ©)

Using expression (5), and substituting equation (1) for (—du/dr) in (4),
the following general relationship is obtained

{5 - ()

el e
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Taking m = 1 in (6), flow equation of a Bingham fluid is accom-

plished, (see [20] and [21])

Tol ™= CBTr: + NB8Y; (7)
where 8,
21n ua

Op =i B (8)

- (3).
T2
is a dimensionless constant depending on the radii of the bob and the
cup, and 7p - coefficient of rigidity of a Bingham fluid (Ns/m?). Flow
data acquired by the viscometer can be fitted by linear relationship (7),
the slope of the line being equal to 7, and the intercept at the ordinate

axis to CpT., (which can give us the value of the yield stress T.), see
Fig. 2a.
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Fig, 2, - Estimation of the rheological parameters:
a)Bingham fluid; b) pseudoplastic.

Taking 7. = 0 in (6), a pseudoplastic flow equation is defined, (see
19] - 21) ;
To =Np (CPT) ] (g)
where the dimensionless constant Cp is equal to

T 2
i 13)
Cp 22

W (10)
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and np - consistency index (Ns™/m?). Now, the slope of the line on
the log 7, — logy plot is equivalent to the flow behavior index m, while
the intercept equals the value of log (7pC%), enabling us to calculate
the value of the coefficient 7p, (see Fig. 2b).

2.2 Capillary tube or pipeline viscometer

The essential feature of this device is the measurement of the frictional
pressure drop Ap (N/m?) and the velocity v (m/s) of laminar flow
through a cylindrical tube of known length L (m) and diameter D (m).
The wall shear stress 7, and the wall shear rate 7 are then calculated,
(see [18] and [19])

DAp
i 1)
8v
T=i (12)

The mean cross-sectional velocity v is equal to:

1

1) = —
R2r

R
f u2rmdr, " (13)
0

where R (m) is the tube radius. Integrating equation (13) by parts,
and then substituting equation (1) for (—du/dr) in it, the following
relationship for a Herschel-Bulkley fluid is realized

v= (%)ﬁ %Ir (m E) : (14)

where a dimensionless function ¥ = ¥ (m, 7./7,) is written as

9
o ()2 0-3
m+1\71, 2m+1 \7, T

m Te\? o
l1——) x({1—-—— :
+3m + 1 ( 'r.,) ( ‘Ta) Us)
If a Bingham model is adopted, taking m = 1 in equations (14) and
(15), the result is the well-known Buckingham-Reiner’s equation, (see
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4
.= L I—EE—I—E(E) : (16)
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Omitting of the last term in brackets of equation (16), (which is reason-
able if 7./7, < 0.4, because the error becomes smaller than 5%), leads

to equation (7), giving a value of Cg = 4/3. The parameters 7, and 7
are estimated the same way as described in Fig. 2a.

(18], [20] and [22))

Flow equation of a pseudoplastic, obtained from equations (8) and
(9) by taking 7. = 0, may be written as, (see [20] and [22])

= 50 () 0

It is the form of equation (9), with Cp = (3m + 1) /(4m). The pa-
rameters 7, and 7np are estimated the same way as described in Fig.
2b.

3 Frictional resistance

Consider a non-Newtonian laminar uniform one-dimensional free-surfa-
ce flow. Shear stress distribution is then given by

=n(-3) o

where 7, is the bottom shear stress (N/m?), and h - total flow depth
(m) . The bottom share rate is equal to
Jv

Comparing the shear diagrams of a Newtonian and non-Newtonian fluid
illustrated in Fig. 1, the following functions can be defined, in a similar
way as did Ogihara and Miyazawa, [14], [15], for a pipe flow

0, g
L

f(T)= (T“_Tc)m’ T> T, (20}
n
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and

T
57§ TET(H

?

7

(T_Tc)# (21)
o e
n

The fluid velocity u at a depth y is given by

d h 7 h [
oy B d—gd 5 Bl f('r}dar‘:;oﬁ (i—g(f))d'r. (22)

Q(T):;—f('r)=

T4

Substituting equation (20) in (22), the following expression is obtained
after integration

L+ o8
s

h

gk

u(7)

(12=)+ = (G(1) =G (), (23)

where

G(r)= [ g(r)ar (24)

Integration of equation (24) gives the Herschel-Bulkley fluid flow veloc-
ity distribution over the flow depth

m_h To — Te o g m
U(T):m+1'£{(fa“fr)( : ) —(ferc)( : )] (25)

or, using (18),

L L1
m To \™ 141 s i E iy
s | oo ( hﬂ) yé [1 (1 yﬂ) ] , (26)

where v, is the flow depth for which 7 = 7,.
Velocity distribution for a Bingham fluid or a pseudoplastic can easily
be derived from equations (25) or (26).

In the vicinity of the fluid surface, where 7 < 7, (if the fluid pos-
sesses the yield stress), there is an unsheared portion of fluid which
moves as a solid plug. Velocity of the plug equals
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i
u(r<7)=u(r)= T_ lh,(:rﬂr Te) (To Tr) i (27)
m Ta ]
;8
m 11T =il
u(y >y) = g (hﬁ) . (28)

For a Bingham fluid (m = 1), from equation (27) the plug velocity
equals (see [2], [7] and [21]),

uir) = in (7, — T,;)Q, (29)
or, from (19)
TG‘

Flow velocity distribution in dependence on the value of the flow
behavior index m can be written in the form

Bl b Ko By § ey 5 T (31)

if dimensionless numbers X and Y are defined as

X = 'M(y)i
m (Tﬂ)"‘ Ly
m+1 \ hn

Y = =. (33)

; (32)

and

Relationship (31) is illustrated in Fig. 3.

The mean cross-sectional flow velocity v is equal to

=%/ﬂ“u(y)dy:l];"u(rr)d—r. (34)

To

v

Substituting equations (23) and (24) in (25), and after integration:
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v="22(1-X (), (35)

X(Tc]—dp .G ,,)—f'(* dr] (36)

] e

X(Y)

Fig. 3. - Velocity distribution over the flow depth for
different m values [9].

By integration of equation (36), the expression for X (7,) is defined

X (ny=1r $ (";—])E @ (m;) , (37)

where a dimensionless function ® = @ (m, "—;‘:) is expressed by

q):.{m+1??;m+1) [1+m(1+:_:)] (1_%)%’ (38)

which, combining it with equation (35), gives the equation of laminar
uniform one-dimensional free-surface flow of a Herschel-Bulkley fluid in

the form .
A= Te
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Taking into consideration a definition of the Darcy-Weisbach friction

factor f
&

= il 40
where p,, (kg/m?®) denotes density of the given fluid, the following
equation is obtained from (35)

6 6
— = 41
! Re[l1- X (7,)] Re’ (41)
where Reynolds number He is equal to
e (42)
n

Substituting the equation (37) for X (7,) , the extended Reynolds num-
ber is then defined as

= h ° m W 2--mhm
T O P B (T—) § P L ™. (48)
poo\ 1 p3m!

Equation (41) means that, even though the fluid has non-Newtonian
properties, the friction factor can be determined by applying the stan-
dard Moody diagram, if the extended Reynolds number, according to
formulation (43), is introduced.

For a Bingham fluid, the following expression for the function @ is
obtained from (38)

| 3T {0 o T
P e A S L T 44
2‘rﬁ.+2(’ro) 44)

The flow equation is formed by simplifying equation (39), (see 2], [7],
(11], [12], [16] and [24])

_Tﬂ'h 1_§E+1 EE 45
e v 2(1'0) : i

and the extended Reynolds number equals:

pmvh 37 i 1 (Tc)‘?' 46
nB 2% 1 NS b (46)

RE1 =
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For a pseudoplastic, the following relationships are derived, [22]:

— i (47)
2m + 1
v=h ol (E) l : (48)
2m+1 \np
2—mjm . i1
7 ) i ( 3m )

Re, = 49
i npd3™ 1 \2m+1 -

The value of Re = 2100 associated with transition from laminar to
turbulent flow regime may be recommended, [7]. The transition velocity
can be calculated using equations (46) and (49).

4 Experiments

4.1 Properties of investigated fluid

The fluids used in experiments are water-kaolinite clay mixtures with
different solid particles concentrations. The mean diameter of the par-
ticles is 0.006 mm.The specific density of the clay material is 2.65, and
its chemical composition: SiO, (= 50%), Al2O3 (37%), CaO (< 5%)
and FeaO3 (<3%). Nine solid-liquid mixtures were investigated, whose
density and solids concentrations, (by volume Cy and by weight Cy),
are presented in Table 1.

Table 1. Basic physical properties of investigated fluids [21].

|
e 2.0 4.0 6.2 B 1z | 139 | 169 | 2001 | 236
C. (%) 5 10 15 20 25 0 35 40 45
P . (kgim") 1032 | 1066 | 1103 | 1142 | 1184 | 1230 | 1279 | 1332 | 1389

4.2 Rheological measurements

Rheological parameters were determined on the basis of measurements
by the coaxial cylinder rotational viscometer. The experiments and
equipment were described in an earlier paper [21]. Only laminar flow
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data were used for rheological modelling. Mixtures with solids concen-
tration up to 8.6 % were found to be Newtonian, whereas shear dia-
grams of the thicker mixtures point to a non-Newtonian character, the
results being in agreement with findings by [23]. Treating the thicker
mixtures as Bingham fluids, parameters were estimated by [11]. In this
paper, parameters are determined assumig the pseudoplastic behavior
of the mixtures, according to procedure described in Sect. 2, (see Fig.
4). Values of the parameters for both rheological models are shown in
Table 2, (where n denotes the number of data points used for definition

of the models, and r? is the coefficient of determination).

Fig. 4. - Estimation of the pseudoplastic parameters on the basis of
measurements by rotational viscometer.
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Table 2. Rheological parameters of the investigated mixtures.

Bingham fluid Pseudoplastic
el G T, N n P m Ce () MNe n P
_@_ {w{ﬁﬂs U] U] (mPas™) 0] 0]
2.0 1.02 0.00 1.18 4 0.99 1.00 1.00 1.18 4 0.99
4.0 1.02 : 0.00 1.22 4 0.99 1.00 1.0 1.22 4 0.99
6.2 1.02 0.00 1.88 5 0.99 1.00 1.00 1.88 5 0.99 Ig
8.6 1.02 0.00 2.16 6 0.99 1.00 1.00 .16 [ 0.99
11.2 1.02 0.10 3.30 4 0.99 0.9§ 1.01 4.59 q 0.99
13.9 1.02 0.20 6.90 T 0.9% | 0.70 1.02 29.82 7 0.99
16.9 1.02 0.69 12.10 9 0.98 | 0.45 1.03 201.37 9 0.97
20.1 1.02 1.96 20.10 9 096 | 042 1.04 628.08 9 0.97
23.6 1.02 6.19 41.00 9 0.91 0.41 1.4 1499.73 9 0.95
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4.3 Frictional resistance estimation

Experiments were carried out in a laboratory flume at Hydraulic Labo-
ratory of the Faculty of Civil Engineering in Belgrade. The laboratory
rig and the measurement equipment were described in detail by [21].
The steady circulation of the mixtures was ensured by a sludge pump.
The concentration of any particular mixture was constant throughout
experiments, a condition easily satisfied by the relatively small size of
the experimental rig. Electrical probes, connected to a data acquisi-
tion and processing system, were used for continuous measurement of
depths and velocities. Flow in the flume was nearly uniform. The
levels were recorded along the flume, as well as point velocities over
a cross-section. The discharge was determined volumetrically, and by
velocity integration. Based on the experimental results, [21], friction
factor extended Reynolds number relationship is illustrated for Bing-
ham and pseudoplastic models, (see Fig. 5 and 6). Theoretical curves
are obtained using equation (41), the extended Reynolds number values
being calculated using equations (46) and (49).

R o Cv=13.9°fu
¢ C,=20.1%
1
0.1
—
0.01 4
n-ﬂn1 = ....:.::'
771 17 |8 O | e i ] e ot | O e i 2
0.1 : 10 100 1000 10000

Re1

Fig. 5. - Friction factor-extended Reynolds number
relationship for the Bingham model.
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100 £ - - T T a I
1 o C,=13.9% |
10 o
3 v C,=20.1% [
s eq. (41) |
0.1
“— ]
.0.01 -
0.001 1
0.0001 ] —r e —r—rrrre T e e
0.1 1 10 100 1000 10000

Re,
Fig. 6.- Friction factor-extended Reynolds number
relationship for the pseudoplastic.

5 Accuracy of the flow resistance estima-
tion

In order to analyze an accuracy of the flow resistance estimation, rela-
tive error is defined as

Ll
b=
fi

100%, (50)

where f; denotes the theoretical value of the friction factor, calculated
using the equation (41). In Fig. 7 the distribution of the relative error
is shown for the whole range of shear rates. An approximation of the
empirical distribution by the normal distribution gives the median of
2.5 % and the standard deviation of 12 % for the Bingham model,
and the median - 0.5 % and the standard deviation - 11.3 %for the
pseudoplastic model, which points to relatively equalized accuracy in
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the flow resistance prediction.

25

I 0 | l
—| EEM Bingham fluid Kl
20 J—| ¥y Pseudoplaslic
g m flid
o 15 4
Q
g i
g 10
2
D
-4 40
5 (%)
Fig. 7. - Distribution of Darcy-Weisbach friction factor estimation relative
eITor.

However, analyzing the relative error dependence on the rate of
shear, see Fig. 8, it can be concluded that the friction factor is often
overestimated in a zone of the smallest shear rates, if the Bingham
model is used, (which is logical, when considering the form of shear di-
agrams). Regarding the relative error for the pseudoplastic, practically
no dependence on the rate of shear is observed.

40

| SRR
s Bingham fluid
-8 o Pseudoplastic
20 L] aﬂ e
l: o e ¢
£ ] %
- Q e )
%-q:;bl Fé’ 9 I:.‘E 0 7
T L L O o
g ey
(2= ] g H%a = E‘- ar g_‘ }
-] a o
P R v il g
ol|" o .
:
ST [ L8 -
0 =] 10 15 20

1 (1/s)

Fig. 8. - Darcy-Weisbach friction factor estimation relative error
in dependence on the shear rate.

When the zone of the shear rates up to 10 s ! is considered, a certain
advantage of the pseudoplastic model application can be found, see Fig
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9. If the empirical distribution of the relative error is fitted by the
normal one, the median of 4.6 % and the standard deviation of 8.7 % for
the Bingham model, and the median - 0.8 % and the standard deviation
- 7.3 % for the pseudoplastic model is estimated, thus emphasizing an
overestimation of the friction factor values calculated by applying the
former one.

S0

EEM Bingham fluid
40 -—| F#y] Pseudoplaslic

.'::__4,; Bingham flu

- Pseudoplasfic

rel. frequency (%)

10 20
5 (%)

Fig. 9. - Distribution of Darcy-Weisbach friction factor estimation
relative error for shear rates up to 10 s~ 1.

6 Conclusion

Using the Herschel-Bulkley rheological model, the equation of laminar
uniform one-dimensional flow can be derived, the relationship being eas-
ily simplified to widely used Bingham and pseudoplastic models. On
the basis of the equation, an expression for Darcy-Weisbach friction
factor is defined. The frictional resistance estimation can be simpli-
fied to the use of Moody diagram for Newtonian fluids, if the extended
Reynolds number, including all rheological fluid parameters, is intro-
duced. Accuracy level of the friction factor estimation, analyzed on the
basis of experimental results using water-clay mixtures, appears to be
nearly equal if Bingham model or pseudoplastic is applied, except for
the small shear rates, where the friction factor is somewhat overesti-
mated, (about 5 %) when Bingham model is applied.
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Proracun otpora trenja u otvorenom toku jednog
nenjutnovskog fluida primenom Bingham-ovog i
pseudoplasticnog reoloskog modela

U radu je izvedena jednacina jednolikog, ravanskog toka Herschel-
Bulkley-jevog fluida sa slobodnom povrsinom, u lamilarnom rezimu
tecenja. Prikazana je jednaéina kojom se opisuje odgovarajuéi ras-
pored brzine po dubini toka. Na osnovu koncepta, ranije primen-
jenog na slucaj tecenja pod pritiskom, definisan je Reynolds-ov broj u
opstijem obliku, tako da obuhvati sva tri parametra modela Herschel-
Bulkley-ja. Primenom ”prosirenog” Reynolds-ovog broja, proraéun
Darcy-Weisbach-ovog koeficijenta linijskih otpora se svodi na upotrebu
Moody-jevog dijagrama, koji vazi za "¢istu” vodu. Uproséavanjem
napisanih jednacina dobijaju se relacije za, u praksi najcesée koriséene,
Bingham-ov i pseudoplastiéni fluid. Teorijska razmatranja pracena su
rezultatima eksperimenata, izvedenim sa mesavinama vode i gline. Re-
oloski parametri mesavina odredjeni su na osnovu merenja rotacionim
viskozimetrom. Prema dobijenim diagramima smicanja definsani su
reoloski modeli analiziranih mesavina, (Bingham-ov i pseudoplastiéni).
Koriséenjem usvojenih modela, sracunat je koeficijent otpora i upored-
jen sa teorijskom zavisnoscu. Izvrsena je analiza tacnosti odredjivanja
koeficijenta trenja, u nameri da se zakljuci koji je od dva reoloska mod-
ela, (Bingham-ov ili pseudoplastiéni), pogodniji za primenu.





