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1. Introduction

Let Q be a bounded domain in RY (N = 1,2,3) with a smooth boundary
80 =T and let T'; be an open subset of I'. We denote by I'; =T — T, v the
outward unit normal vector on I' and by Sy the set of second order symmetric
tensor on BY. Let T be a real positive constant. We suppose meas I'y > 0.

Let us consider the following mixed problem: find the displacement function u:
Q x [0,T] — R" and the stress function o: Q x [0,T] — Sy such that:

& = E(e(w)) + F(o,e(u)) in Qx(0,T) (1.1)
Dive+f=0 in Qx(0,T) (1.2)
u=g on I1x(0,7) (1.3)

ev=h on T3x(0,T) (1.4)

u(0) = uy, o(0) =09, m L. (1.5)

This problem represents a quasistatic problem for rate-type viscoplastic
models of the form (1.1) where £ is a nonlinear function, ¢(u) : Q x [0,T] — Sy
is the small strain tensor (i.e. &(u) = 3(Vu+ V'u). In (1.1) £ and F are given
constitutive functions and, as well as everywhere in this paper, the dot above a
quantity represents the derivate with respect to the time variable of that quan-
tity. The equation (1.2) is the equilibrium equation in which f: Qx[0,T] — RV
is the given body force and Divo represents the divergence of vector-valued
function o finally the functions g and h in (1.3), (1.4) are the given boundary
data and the functions ug, o in (1.5) are the initial data.

In the case when £ is a linear function, existence and uniqueness results for
problems of the form (1.1)—(1.5) were obtained by Duvaut and Lions [1], Djaoua
and Suquet [2], Suquet [3], (4], Ionescu and Sofonea [5], Djabi and Sofonea (6]
using different functional methods.

The purpose of this paper is to prove the existence and uniqueness of the
solution for the problem (1.1)—(1.5) in the case when £ is a nonlinear function
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using monotony arguments followed by a Cauchy-Lipschitz technique (theorem
3.1).

2. Notations and preliminaries

Everywhere in this paper we utilise the following notations:
" "~ the inner product on the spaces RN and Sy,
|| = the Euclidean norms on R" and Sy,

H:{v:[ﬂ.-}lviELg[ﬂ), i 1,N},

Hy={v=(o)lueH'@, i=TN},

H:{r:[r.-}[f.-EL?‘(ﬂ), i=ﬂ,T},
Hy={r=(n)|Divre H}.

I

The spaces H, H,, H and H, are real Hilbert spaces with the canonical inner
products denoted by <-,->g, <, >g,, <, >x and <, ->x, respectively.

N
1
Let Hr = [Hi(r]] and v:H,; — Hr be the trace map. We denote by

V={u€H|yu=0, onl;}

and
E=%(V)={€€Hpr|yu=0, onl}.

The deformation operator ¢ : H; — H definite above is linear and continu-
ous. Moreover, since meas 'y > 0, Korn’s inequality holds:

le(v)|n > Clvlg, for all veYV, (2.1)

where C is a strictly positive constant wish depends only on @ and Ty. Let
N

Hp = [H%(I‘}] be the strong dual of the space Hr and let <-,-> denote the

duality between H;- and Hp. If r € H, there exists an element ¥,7 & H} such

that
< YT, YV 2=<T, E{U] >x + < Diwvr,v>g for all v € Hy. {2.2)

By T‘i‘!lrz we shall understand the element of E' (the strong dual of £) that
is the restriction of v, 7 on E.
Let us now denote by V the following subspace of Hy:

V= {r €Hi|Divr =0inQ, Tw=0 onl3}.

Using (2.2) it may be proved that £(V) is the orthogonal complement of V

in ‘H, hence
<re(v)>x=0, forallveV, t€ V. (2.3)
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Finally, for every real Hilbert space X, we denote by |-|x the norm on X
and by C¥(0,T,X) (7 =0,1) the spaces

C°0,T,X)={2:[0,T] — X |z is continuous},

Cc'(0,T,X) =
{z:[0,T] — X |there exists z the derivate of z and z eCh0, T, X)}.

Ci(0,T, X) are real Banach spaces endowed with the norms

= max |z(¢ 2.4
|z lox.x :e[u,rll (t) |1x (2.4)
and
lzhox =|zlorx+|2lorx
respectively.

Let us also recall that if K is a convex closed non empty set of X and
P: X — K is the projector map on K, we have

y=Pz — yeK and <y-z,z-y>x20 forall zeK. (25)

3. An existence and uniqueness result

In the study of the problem (1.1)<(1.5) we consider the following assump-
tions:
E£:Qx Sy — Sy and ]
(a) there exist m > 0 such that
< E(e1) — E(2), €1 — €2 >> m|ey — ez |
for all &,£7 € Sy, a.e.infl

(b) there exist L' >0 such that
|E(e1) — E(€2) | 2 L'|er — €2 |2
for all £,,e2 € Sy, a.e.inf

y (3.1)

(¢)z — &(z,e) is a mesurable function with respect to
the Lebesgue measure on(2, for all ¢ € Sy

(dz— E(ze)eN
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F:Qx Sy xSy —Sy and ]
(a)there exists L >0 such that

| F(z,01,61) = F(z,02,62) | < L(| 0y = o2 | + |1 — €2 )

for all &y,02,61,620 € Sy, ae. In €

> (3.2)
(b)z — F(z,0,e) is a mesurable function with respect to
the Lebesgue measure on{2, for all &, € Sy
(e)z — F(z,0,0) e H y
fe cYo,T,H), g€ C'(0,T,Hr), he CY(0,T.E) (3.3)
ug € Hl, oo € Hy {3,4]

Diveg+ f(0) =0 inQ, wuwo=g(0) only, oov=~h(0) onl,. (3.5)

The main result of this section is the following:
Theorem 3.1. Let (3.1)-(3.5) hold. Then there exists a unique solution

u € C(0,T,Hy), o€ CY0,T, H,)
of the problem (1.1)-(1.5).

In order to prove theorem 3.1 we need some preliminaries. Let
ae CY0,T,H,), &€ CY0,T, H)

be two functions such that:

Diva+ f=0 in 2x(0,T) (3.6)
#t=g on I, x(0,T) (3.7)
gv=h on Ty x(0,T) (3.8)

(the existence of this couple follows from (3.3) and the proprieties of the trace
maps).
Considering the functions defined by

i=u—1i, d=0—7 (3.9)

iig = up — w(0), &9 = 09— a(0) (3.10)

it is easily to see that the pair (u,e) € C'(0,T, H, x M) is a solution of (1.1)-
(1.5) iff (@, &) € C(0,T,V x V) is a solution of the problem

G = E(e(it) + e(#)) + F(5+ 7, e(@) + (@) - inQx(0,T) (3.11)
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E(U) = g, E'[ﬂ] =dp in f. {312]

Let Z = e(V) x V; Z is a product Hilbert space endowed with the inner
product

21,22 >z=< 21,22 S+ < Ty >x Yz =(zi, %) € 2, i=12 (3.13)

The norm on Z will be denoted by |- |z. We have:

Lemma 3.1. Let = € ¢(V), y € V and t € [0,T]. Then there exists a
unique element z = (¢(v), 7) € Z such that:

r = E(e(v) + e(&(t))) + F(y + 3(t), z + e(ii(t))) — &(2).

Proof. The uniqueness part is a consequence of (3.1); indeed, if z; =
(e(v1), 1), z2 = (e(va), T2) are such that:

= E(e(vy) + e(0(?))) + F(y + a(t), z +£(0(t))) — (1)

ry = £(e(v2) +e(ii(t))) + Fly + 3(t), = +e(i(t))) — 5(2),

using (3.1a) we have:
<1 —7,6(v1) = &(v2) >n=
< E(e(v1) +£(H(1))) — E(e(v) + £(ilt))), €(vr) — (v2) >
> m|e(vy) — e(va) I3
Using now the orthogonality in H of (1 —73) € V and (&(v1) —&(v2)) € e(V)

(see (2.3)) we deduce e(vy) = €(vz) which implies 7, = 73.

For the existence part let us consider the map G(t,z,y,-) : €(V) — H
defined by

Glt,z,y,9) = £(g + e(E(2) + Fy + 5(2), = +e(a(t))) = a(t) (3.14)

and let S(t,z,y,-) : &(V) — &(V) be given by S(t,z,y,-) = PG(t,z,y,-) where
P :H — g(V) is the projector map on £(V). Using (2.5), (3.1) and (3.2) we get
that the operator S(t,z,y, ) : €(V) — (V) is a strongly monotone and Lipschitz
operator. Indeed, for all q;, g2 € €(V) we get
< S(tl L, 1, tIl) - S(ti Iy, 'Ii): q1 — q2 =
(3.15)
< G{tT:'lyl ql) o G(tiz'rqun}: q1 — q2 }HE ml q1 — q2 1;1'.'

which implies that S(t,z,y,-) is a strongly monotone operator. Moreover, from
(3.1.b) and the proprieties of the projector map, we get:

IS{tjzmy:th}"S(ttIry:‘EE) |H < ‘
<|G(t,z,y,q1) — G(t,z,9,02) I < (3.16)
<L|lp-aln
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hence S(t,z,y,-) is a Lipschitz operator. Using now Browder’s surjectivity the-
orem we get that there exists £(v) € (V) such that S(t,z,y,£(v)) = Ogvy. It
results that the element G(t,z,y,¢(v)) belongs to V and we finish the proof
taking z= (e(v), 7) where

T = G(t,z,y,6(v)) = E(e(v) + e(ii(t))) + F(y + 5(t), z + £(ii(t))) — &(¢).

The previous lemma allows us to consider the operator A : [0,T]x Z — 2
defined as follows:

Alt,w) =2 & w=(z,y); 2(ev),r) and =Gtz yet)). (3.17)

We have:

Lemma 3.2. The operator A : [0,T] x Z — Z is continuous and there
exists C' > (0 which depends on £ and F such that

| A(t,wy) — A(t,wa) |z < Clwy —wq|z forall te[0,T), w;,wp€Z. (3.18)
Proof. Let t; € [0,T), wi = (zi,%) € Z and z; = (e(v), ) = A(li,wi),
i=1,2. Using (3.17) and (3.14) we get
=Gz, y,e(v)) =
= E(e(w) + e(u(t:)) + F(w + 5(t:), =i + e(u(ts))) - 3(ts) i=1,2
which implies

(3.19)

S{thx{,yi,ﬁ(ui}} =n:{V}: 1= 112 (32{}]
From (3.15) and (3.20) we get

m|e(v1) —£(va) [} <

<< S(t1, 21,91, 6(v1)) = S(t1, 21,11, 6(v2)), £(v1) — €(va) > <
< < S(tz, 22, y2.6(v2)) — S(t, z1,31,6(v2)), €(v1) — €(v2) > <
< |Glta, z2,y2,6(v2)) — Glty, 21, y1,€(v2)) I3 | e(v1) — e(v2) In

which implies
1
le(vy) —e(v2) In < ;l G(tz, 22,y2,€(v2)) — G(t1, 21, 41, 6(v2)) In (3.21)

Using now (3.19), (3.14) and (3.1.b) we get
| 7y = 73 I = | Glt1, 21,41, 6(v1)) — G(ta, 22, y2,€(v2)) [ <)

< |G(t, 21, 1, 6(n1)) — Gy, 21, 41, €(v2) I +
L (3.22)
+| G(ty, z1,y1,(v2)) — G(t2, 2, y2,€(v2)) |n <

< L' |e(v) = e(va) [ + | G(t1, 21, 1, €(v2)) = G(t2, 22,2, €(v2)) |x |
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hence by (3.21) it results

|1 —mln < (L;Ht) | G(t1, 21, y1, €(va)) — Gltz, 22, y2,6(v2)) [ (3.23)

Using now (3.14) and (3.2.b) we get

hG{tI:xhth(Uﬂ) == G{tg,ﬂ.‘g, _T,FE,E[U'Z)} lH E )

(3.24)

“u

< L(lzy=zaln+ v —valn)

+|G(ty, 22, y2,6(v2)) — G(t2, z2,¥2,(v2)) |n J

Moreover, by (3.14), (3.1), (3.2), (3.24) and the regularities @ € C*(0,T,V),
g€ CY0,T,V), we get

|G(t1,z1,1,6(v2)) — G(ta, 22,¥2,6(v2)) [ — 0
(3.25)
whent, — t, in[0,T], z;—z, inH and y; —y; inH.

Using now (3.21), (3.13) we get

| A(ty,w1) — Alts,w2) |z < C|G(t1, 21, 11,6(v2)) — G(t2, 22, y2,6(v2)) I (3.26)

where C' > 0, hence by (3.25) we obtain that A is a continuous operator. Taking
t; =t, =t in (3.26) and using (3.24), (3.13) we get (3.18).

Proof of theorem 3.1. Using the definition of the operator A we get
that @ € C'(0,T,e(V)) and & € C(0,T,V) is a solution of (3.11), (3.12) iff
z = (e(@),#) € C*(0,T, Z) is a solution of the problem

z = A(t,2(t)) for all te[0,T) (3.27)

z(0) = (e(%o), 7o)- (3.28)

In order to study (3.27), (3.28) let us remark that by (3.4)-(3.8) e(uo) €
e(V), @ € V hence (e(iig),50) € Z. Using now lemma 3.2 and the clas-
sical Cauchy-Lipschitz theorem we get that (3.27), (3.28) has a unique so-
lution z € C'(0,T,2). It results that (3.11), (3.12) has a unique solution
i€ CY(0,T,V), &€CY0,T,V) and we get the statement of theorem 3.1.
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UNE METHODE DE MONOTONIE
EN VISCOPLASTICITE QUASISTATIQUE

Dans cet article on considére un probléme initial et aux limites décrivant
I'évolution quasistatique pour quelques modéles viscoplastiques semi-linéaires.
On prouve un résultat d’existence et d'unicité de la solution en utilisant des
arguments de monotonie suivis d’une technique de type Cauchy-Lipschitz.
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