A MONOTONY METHOD IN QUASISTATIC RATE-TYPE VISCOPLASTICITY

S. Djabi, M. Sofonea

(Received 17.05.1993)

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N (N=1,2,3) with a smooth boundary $\partial\Omega=\Gamma$ and let Γ_1 be an open subset of Γ . We denote by $\Gamma_2=\Gamma-\overline{\Gamma}_1$, ν the outward unit normal vector on Γ and by S_N the set of second order symmetric tensor on \mathbb{R}^N . Let T be a real positive constant. We suppose meas $\Gamma_1>0$. Let us consider the following mixed problem: find the displacement function u: $\Omega\times[0,T]\to\mathbb{R}^N$ and the stress function $\sigma\colon\Omega\times[0,T]\to S_N$ such that:

$$\dot{\sigma} = \mathcal{E}(\varepsilon(\dot{u})) + F(\sigma, \varepsilon(u)) \quad in \quad \Omega \times (0, T)$$
 (1.1)

$$Div \sigma + f = 0$$
 in $\Omega \times (0,T)$ (1.2)

$$u = g \quad on \quad \Gamma_1 \times (0, T)$$
 (1.3)

$$\sigma \nu = h \quad on \quad \Gamma_2 \times (0, T) \tag{1.4}$$

$$u(0) = u_0, \quad \sigma(0) = \sigma_0, \quad in \quad \Omega.$$
 (1.5)

This problem represents a quasistatic problem for rate-type viscoplastic models of the form (1.1) where \mathcal{E} is a nonlinear function, $\varepsilon(u): \Omega \times [0,T] \to S_N$ is the small strain tensor (i.e. $\varepsilon(u) = \frac{1}{2}(\nabla u + \nabla^t u)$. In (1.1) \mathcal{E} and F are given constitutive functions and, as well as everywhere in this paper, the dot above a quantity represents the derivate with respect to the time variable of that quantity. The equation (1.2) is the equilibrium equation in which $f: \Omega \times [0,T] \to \mathbb{R}^N$ is the given body force and $Div\sigma$ represents the divergence of vector-valued function σ ; finally the functions g and h in (1.3), (1.4) are the given boundary data and the functions u_0 , σ_0 in (1.5) are the initial data.

In the case when \mathcal{E} is a linear function, existence and uniqueness results for problems of the form (1.1)–(1.5) were obtained by Duvaut and Lions [1], Djaoua and Suquet [2], Suquet [3], [4], Ionescu and Sofonea [5], Djabi and Sofonea [6] using different functional methods.

The purpose of this paper is to prove the existence and uniqueness of the solution for the problem (1.1)–(1.5) in the case when \mathcal{E} is a nonlinear function

using monotony arguments followed by a Cauchy-Lipschitz technique (theorem 3.1).

2. Notations and preliminaries

Everywhere in this paper we utilise the following notations: "."- the inner product on the spaces \mathbb{R}^N and S_N ,

 $|\cdot|$ - the Euclidean norms on \mathbb{R}^N and S_N ,

$$\begin{split} H &= \left\{ v = \left(v_i \right) \, \middle| \, v_i \in L^2(\Omega), \quad i = \overline{1, N} \right\}, \\ H_1 &= \left\{ v = \left(v_i \right) \, \middle| \, v_i \in H^1(\Omega), \quad i = \overline{1, N} \right\}, \\ \mathcal{H} &= \left\{ \tau = \left(\tau_i \right) \, \middle| \, \tau_i \in L^2(\Omega), \quad i = \overline{1, N} \right\}, \\ \mathcal{H}_1 &= \left\{ \tau = \left(\tau_i \right) \, \middle| \, Div \, \tau \in H \right\}. \end{split}$$

The spaces H, H_1 , \mathcal{H} and \mathcal{H}_1 are real Hilbert spaces with the canonical inner products denoted by $\langle \cdot, \cdot \rangle_H$, $\langle \cdot, \cdot \rangle_{H_1}$, $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and $\langle \cdot, \cdot \rangle_{\mathcal{H}_1}$ respectively.

Let
$$H_{\Gamma}=\left[H^{\frac{1}{2}}(\Gamma)\right]^N$$
 and $\gamma\!:\!H_1\to H_{\Gamma}$ be the trace map. We denote by
$$V=\{u\in H_1\,|\, \gamma u=0,\quad \text{on }\Gamma_1\}$$

and

$$E = \gamma(V) = \{ \xi \in H_{\Gamma} \mid \gamma u = 0, \quad \text{on } \Gamma_1 \}.$$

The deformation operator $\varepsilon: H_1 \to \mathcal{H}$ definite above is linear and continuous. Moreover, since meas $\Gamma_1 > 0$, Korn's inequality holds:

$$|\varepsilon(v)|_{\mathcal{H}} \ge C|v|_{H_1}$$
 for all $v \in V$, (2.1)

where C is a strictly positive constant wish depends only on Ω and Γ_1 . Let $H'_{\Gamma} = \left[H^{\frac{1}{2}}(\Gamma)\right]^N$ be the strong dual of the space H_{Γ} and let $<\cdot,\cdot>$ denote the duality between H'_{Γ} and H_{Γ} . If $\tau \in \mathcal{H}_1$ there exists an element $\gamma_{\nu}\tau \in H'_{\Gamma}$ such that

$$<\gamma_{\nu}\tau, \gamma v> = <\tau, \varepsilon(v)>_{\mathcal{H}} + < Div\tau, v>_{H} \text{ for all } v \in H_{1}.$$
 (2.2)

By $\tau \nu|_{\Gamma_2}$ we shall understand the element of E' (the strong dual of E) that is the restriction of $\gamma_{\nu}\tau$ on E.

Let us now denote by V the following subspace of \mathcal{H}_1 :

$$V = \{ \tau \in \mathcal{H}_1 \mid Div \tau = 0 \text{ in } \Omega, \quad \tau \nu = 0 \quad \text{on } \Gamma_2 \}.$$

Using (2.2) it may be proved that $\varepsilon(V)$ is the orthogonal complement of Vin H, hence

$$\langle \tau, \varepsilon(v) \rangle_{\mathcal{H}} = 0$$
, for all $v \in V$, $\tau \in V$. (2.3)

Finally, for every real Hilbert space X, we denote by $|\cdot|_X$ the norm on X and by $C^j(0,T,X)$ (j=0,1) the spaces

$$C^0(0,T,X) = \{z : [0,T] \to X \mid z \text{ is continuous}\},$$

$$C^1(0,T,X) =$$

 $\{z:[0,T]\to X\,|\, \text{there exists \dot{z} the derivate of z and $\dot{z}\in C^0(0,T,X)$}\}$.

 $C^{j}(0,T,X)$ are real Banach spaces endowed with the norms

$$|z|_{0,T,X} = \max_{t \in [0,T]} |z(t)|_X \tag{2.4}$$

and

$$|z|_{1,T,X} = |z|_{0,T,X} + |\dot{z}|_{0,T,X}$$

respectively.

Let us also recall that if K is a convex closed non empty set of X and $P: X \to K$ is the projector map on K, we have

$$y = Px \iff y \in K \text{ and } \langle y - x, z - y \rangle_X \ge 0 \text{ for all } z \in K.$$
 (2.5)

3. An existence and uniqueness result

In the study of the problem (1.1)–(1.5) we consider the following assumptions:

$$\mathcal{E}: \Omega \times S_N \to S_N$$
 and
(a) there exist $m > 0$ such that
 $< \mathcal{E}(\varepsilon_1) - \mathcal{E}(\varepsilon_2), \ \varepsilon_1 - \varepsilon_2 > \geq m |\varepsilon_1 - \varepsilon_2|^2$
for all $\varepsilon_1, \varepsilon_2 \in S_N$, a.e. in Ω

(b) there exist
$$L' > 0$$
 such that
$$|\mathcal{E}(\varepsilon_1) - \mathcal{E}(\varepsilon_2)| \ge L' |\varepsilon_1 - \varepsilon_2|^2$$
for all $\varepsilon_1, \varepsilon_2 \in S_N$, $a.e.$ in Ω

 $(c) x \to \mathcal{E}(x, \varepsilon)$ is a mesurable function with respect to the Lebesgue measure on Ω , for all $\varepsilon \in S_N$

$$(d) x \to \mathcal{E}(x,\varepsilon) \in \mathcal{H}$$

$$F: \Omega \times S_N \times S_N \to S_N$$
 and

(a) there exists L>0 such that $|F(x,\sigma_1,\varepsilon_1)-F(x,\sigma_2,\varepsilon_2)| \leq L(|\sigma_1-\sigma_2|+|\varepsilon_1-\varepsilon_2|)$ for all $\sigma_1,\sigma_2,\varepsilon_1,\varepsilon_2 \in S_N$, a.e. in $\in \Omega$

the Lebesgue measure on Ω , for all $\sigma, \varepsilon \in S_N$

 $(b) x \to F(x, \sigma, \varepsilon)$ is a mesurable function with respect to

$$(c) x \rightarrow F(x, 0, 0) \in \mathcal{H}$$

$$f \in C^{1}(0, T, H), g \in C^{1}(0, T, H_{\Gamma}), h \in C^{1}(0, T, E')$$
 (3.3)

$$u_0 \in H_1, \quad \sigma_0 \in \mathcal{H}_1 \tag{3.4}$$

(3.2)

$$Div \sigma_0 + f(0) = 0$$
 in Ω , $u_0 = g(0)$ on Γ_1 , $\sigma_0 \nu = h(0)$ on Γ_2 . (3.5)

The main result of this section is the following:

Theorem 3.1. Let (3.1)-(3.5) hold. Then there exists a unique solution

$$u \in C^1(0, T, H_1), \quad \sigma \in C^1(0, T, \mathcal{H}_1)$$

of the problem (1.1)-(1.5).

In order to prove theorem 3.1 we need some preliminaries. Let

$$\tilde{u} \in C^1(0, T, H_1), \quad \tilde{\sigma} \in C^1(0, T, \mathcal{H}_1)$$

be two functions such that:

$$Div\,\tilde{\sigma} + f = 0 \quad \text{in} \quad \Omega \times (0, T)$$
 (3.6)

$$\tilde{u} = g \quad \text{on} \quad \Gamma_1 \times (0, T)$$
 (3.7)

$$\tilde{\sigma}\nu = h$$
 on $\Gamma_2 \times (0, T)$ (3.8)

(the existence of this couple follows from (3.3) and the proprieties of the trace maps).

Considering the functions defined by

$$\bar{u} = u - \tilde{u}, \quad \bar{\sigma} = \sigma - \tilde{\sigma}$$
 (3.9)

$$\bar{u}_0 = u_0 - \bar{u}(0), \quad \bar{\sigma}_0 = \sigma_0 - \bar{\sigma}(0)$$
 (3.10)

it is easily to see that the pair $(u, \sigma) \in C^1(0, T, H_1 \times \mathcal{H}_1)$ is a solution of (1.1)–(1.5) iff $(\bar{u}, \bar{\sigma}) \in C^1(0, T, V \times V)$ is a solution of the problem

$$\dot{\bar{\sigma}} = \mathcal{E}(\varepsilon(\dot{\bar{u}}) + \varepsilon(\dot{\bar{u}})) + F(\bar{\sigma} + \tilde{\sigma}, \, \varepsilon(\bar{u}) + \varepsilon(\tilde{u})) - \dot{\bar{\sigma}} \quad \text{in } \Omega \times (0, T)$$
(3.11)

$$\bar{u}(0) = \bar{u}_0, \quad \bar{\sigma}(0) = \bar{\sigma}_0 \quad \text{in } \Omega.$$
 (3.12)

Let $Z = \varepsilon(V) \times \mathcal{V}$; Z is a product Hilbert space endowed with the inner product

$$\langle z_1, z_2 \rangle_Z = \langle x_1, x_2 \rangle_{\mathcal{H}} + \langle x_2, y_2 \rangle_{\mathcal{H}} \quad \forall z_i = (x_i, y_i) \in \mathbb{Z}, \quad i = 1, 2. \quad (3.13)$$

The norm on Z will be denoted by $|\cdot|_Z$. We have:

Lemma 3.1. Let $x \in \varepsilon(V)$, $y \in V$ and $t \in [0,T]$. Then there exists a unique element $z = (\varepsilon(v), \tau) \in Z$ such that:

$$\tau = \mathcal{E}(\varepsilon(v) + \varepsilon(\dot{\tilde{u}}(t))) + F(y + \tilde{\sigma}(t), x + \varepsilon(\tilde{u}(t))) - \dot{\tilde{\sigma}}(t).$$

Proof. The uniqueness part is a consequence of (3.1); indeed, if $z_1 = (\varepsilon(v_1), \tau_1), z_2 = (\varepsilon(v_2), \tau_2)$ are such that:

$$\tau_1 = \mathcal{E}(\varepsilon(v_1) + \varepsilon(\dot{\tilde{u}}(t))) + F(y + \tilde{\sigma}(t), x + \varepsilon(\tilde{u}(t))) - \dot{\tilde{\sigma}}(t)$$

$$\tau_2 = \mathcal{E}(\varepsilon(v_2) + \varepsilon(\dot{\tilde{u}}(t))) + F(y + \tilde{\sigma}(t), x + \varepsilon(\tilde{u}(t))) - \dot{\tilde{\sigma}}(t),$$

using (3.1a) we have:

$$<\tau_{1}-\tau_{2}, \varepsilon(v_{1})-\varepsilon(v_{2})>_{\mathcal{H}} =$$

$$<\varepsilon(\varepsilon(v_{1})+\varepsilon(\dot{\tilde{u}}(t)))-\varepsilon(\varepsilon(v_{2})+\varepsilon(\dot{\tilde{u}}(t))), \varepsilon(v_{1})-\varepsilon(v_{2})>_{\mathcal{H}}$$

$$\geq m|\varepsilon(v_{1})-\varepsilon(v_{2})|_{\mathcal{H}}^{2}.$$

Using now the orthogonality in \mathcal{H} of $(\tau_1 - \tau_2) \in \mathcal{V}$ and $(\varepsilon(v_1) - \varepsilon(v_2)) \in \varepsilon(V)$ (see (2.3)) we deduce $\varepsilon(v_1) = \varepsilon(v_2)$ which implies $\tau_1 = \tau_2$.

For the existence part let us consider the map $G(t,x,y,\cdot): \varepsilon(V) \to \mathcal{H}$ defined by

$$G(t, x, y, q) = \mathcal{E}(q + \varepsilon(\dot{\tilde{u}}(t))) + F(y + \tilde{\sigma}(t), x + \varepsilon(\tilde{u}(t))) - \dot{\tilde{\sigma}}(t)$$
 (3.14)

and let $S(t,x,y,\cdot): \varepsilon(V) \to \varepsilon(V)$ be given by $S(t,x,y,\cdot) = PG(t,x,y,\cdot)$ where $P: \mathcal{H} \to \varepsilon(V)$ is the projector map on $\varepsilon(V)$. Using (2.5), (3.1) and (3.2) we get that the operator $S(t,x,y,\cdot): \varepsilon(V) \to \varepsilon(V)$ is a strongly monotone and Lipschitz operator. Indeed, for all $q_1, q_2 \in \varepsilon(V)$ we get

$$\langle S(t, x, y, q_1) - S(t, x, y, q_2), q_1 - q_2 \rangle_{\mathcal{H}} =$$

$$\langle G(t, x, y, q_1) - G(t, x, y, q_2), q_1 - q_2 \rangle_{\mathcal{H}} \geq m |q_1 - q_2|_{\mathcal{H}}^2$$

$$(3.15)$$

which implies that $S(t, x, y, \cdot)$ is a strongly monotone operator. Moreover, from (3.1.b) and the proprieties of the projector map, we get:

$$| S(t, x, y, q_1) - S(t, x, y, q_2) |_{\mathcal{H}} \le$$

$$| G(t, x, y, q_1) - G(t, x, y, q_2) |_{\mathcal{H}} \le$$

$$| G(t, x, y, q_1) - G(t, x, y, q_2) |_{\mathcal{H}} \le$$

$$| (q_1) - q_2|_{\mathcal{H}}$$

$$(3.16)$$

hence $S(t,x,y,\cdot)$ is a Lipschitz operator. Using now Browder's surjectivity theorem we get that there exists $\varepsilon(v) \in \varepsilon(V)$ such that $S(t,x,y,\varepsilon(v)) = 0_{\varepsilon(V)}$. It results that the element $G(t,x,y,\varepsilon(v))$ belongs to V and we finish the proof taking $z = (\varepsilon(v), \tau)$ where

$$\tau = G(t,x,y,\varepsilon(v)) = \mathcal{E}(\varepsilon(v) + \varepsilon(\dot{\tilde{u}}(t))) + F(y + \tilde{\sigma}(t),x + \varepsilon(\dot{\tilde{u}}(t))) - \dot{\tilde{\sigma}}(t).$$

The previous lemma allows us to consider the operator $A:[0,T]\times Z\to Z$ defined as follows:

$$A(t,\omega) = z \iff \omega = (x,y), z(\varepsilon(v),\tau) \text{ and } \tau = G(t,x,y,\varepsilon(t)).$$
 (3.17)

We have:

Lemma 3.2. The operator $A:[0,T]\times Z\to Z$ is continuous and there exists C>0 which depends on $\mathcal E$ and F such that

$$|A(t,\omega_1) - A(t,\omega_2)|_Z \le C |\omega_1 - \omega_2|_Z$$
 for all $t \in [0,T], \omega_1, \omega_2 \in Z$. (3.18)

Proof. Let $t_i \in [0,T]$, $\omega_i = (x_i,y_i) \in Z$ and $z_i = (\varepsilon(v),\tau_i) = A(t_i,\omega_i)$, i=1,2. Using (3.17) and (3.14) we get

$$\tau_{i} = G(t, x, y, \varepsilon(v_{i})) =$$

$$= \mathcal{E}(\varepsilon(v_{i}) + \varepsilon(\dot{\tilde{u}}(t_{i}))) + F(y_{i} + \tilde{\sigma}(t_{i}), x_{i} + \varepsilon(\dot{\tilde{u}}(t_{i}))) - \dot{\tilde{\sigma}}(t_{i}) \quad i = 1, 2$$
(3.19)

which implies

$$S(t_i, x_i, y_i, \varepsilon(v_i)) = 0_{\varepsilon(V)}, \quad i = 1, 2. \tag{3.20}$$

From (3.15) and (3.20) we get

$$\begin{aligned} m | \, \varepsilon(v_1) - \varepsilon(v_2) \, |_{\mathcal{H}}^2 \, \leq \\ \leq & < S(t_1, x_1, y_1, \varepsilon(v_1)) - S(t_1, x_1, y_1, \varepsilon(v_2)), \, \varepsilon(v_1) - \varepsilon(v_2) >_{\mathcal{H}} \leq \\ \leq & < S(t_2, x_2, y_2, \varepsilon(v_2)) - S(t_1, x_1, y_1, \varepsilon(v_2)), \, \varepsilon(v_1) - \varepsilon(v_2) >_{\mathcal{H}} \leq \\ \leq & | \, G(t_2, x_2, y_2, \varepsilon(v_2)) - G(t_1, x_1, y_1, \varepsilon(v_2)) \, |_{\mathcal{H}} \, | \, \varepsilon(v_1) - \varepsilon(v_2) \, |_{\mathcal{H}} \end{aligned}$$

which implies

$$|\varepsilon(v_1) - \varepsilon(v_2)|_{\mathcal{H}} \le \frac{1}{m} |G(t_2, x_2, y_2, \varepsilon(v_2)) - G(t_1, x_1, y_1, \varepsilon(v_2))|_{\mathcal{H}}$$
 (3.21)

Using now (3.19), (3.14) and (3.1.b) we get

$$|\tau_{1} - \tau_{2}|_{\mathcal{H}} = |G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{1})) - G(t_{2}, x_{2}, y_{2}, \varepsilon(v_{2}))|_{\mathcal{H}} \leq$$

$$\leq |G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{1})) - G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{2}))|_{\mathcal{H}} +$$

$$+ |G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{2})) - G(t_{2}, x_{2}, y_{2}, \varepsilon(v_{2}))|_{\mathcal{H}} \leq$$

$$\leq L' |\varepsilon(v_{1}) - \varepsilon(v_{2})|_{\mathcal{H}} + |G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{2})) - G(t_{2}, x_{2}, y_{2}, \varepsilon(v_{2}))|_{\mathcal{H}}$$

$$(3.22)$$

hence by (3.21) it results

$$|\tau_1 - \tau_2|_{\mathcal{H}} \le \left(\frac{L'}{m} + 1\right) |G(t_1, x_1, y_1, \varepsilon(v_2)) - G(t_2, x_2, y_2, \varepsilon(v_2))|_{\mathcal{H}}.$$
 (3.23)

Using now (3.14) and (3.2.b) we get

$$|G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{2})) - G(t_{2}, x_{2}, y_{2}, \varepsilon(v_{2}))|_{\mathcal{H}} \leq$$

$$\leq L (|x_{1} - x_{2}|_{\mathcal{H}} + |y_{1} - y_{2}|_{\mathcal{H}})$$

$$+ |G(t_{1}, x_{2}, y_{2}, \varepsilon(v_{2})) - G(t_{2}, x_{2}, y_{2}, \varepsilon(v_{2}))|_{\mathcal{H}}$$

$$(3.24)$$

Moreover, by (3.14), (3.1), (3.2), (3.24) and the regularities $\tilde{u} \in C^1(0, T, V)$, $\tilde{\sigma} \in C^1(0, T, V)$, we get

$$|G(t_{1}, x_{1}, y_{1}, \varepsilon(v_{2})) - G(t_{2}, x_{2}, y_{2}, \varepsilon(v_{2}))|_{\mathcal{H}} \to 0$$
when $t_{1} \to t_{2}$ in $[0, T]$, $x_{1} \to x_{2}$ in \mathcal{H} and $y_{1} \to y_{2}$ in \mathcal{H} . (3.25)

Using now (3.21), (3.13) we get

$$|A(t_1,\omega_1) - A(t_2,\omega_2)|_Z \le \tilde{C}|G(t_1,x_1,y_1,\varepsilon(v_2)) - G(t_2,x_2,y_2,\varepsilon(v_2))|_{\mathcal{H}} \quad (3.26)$$

where $\tilde{C} > 0$, hence by (3.25) we obtain that A is a continuous operator. Taking $t_1 = t_2 = t$ in (3.26) and using (3.24), (3.13) we get (3.18).

Proof of theorem 3.1. Using the definition of the operator A we get that $\bar{u} \in C^1(0,T,\varepsilon(V))$ and $\bar{\sigma} \in C^1(0,T,V)$ is a solution of (3.11), (3.12) iff $z = (\varepsilon(\bar{u}),\bar{\sigma}) \in C^1(0,T,Z)$ is a solution of the problem

$$\dot{z} = A(t, z(t)) \quad \text{for all} \quad t \in [0, T]$$
(3.27)

$$z(0) = (\varepsilon(\bar{u}_0), \bar{\sigma}_0). \tag{3.28}$$

In order to study (3.27), (3.28) let us remark that by (3.4)–(3.8) $\varepsilon(\bar{u}_0) \in \varepsilon(V)$, $\bar{\sigma}_0 \in V$ hence $(\varepsilon(\bar{u}_0), \bar{\sigma}_0) \in Z$. Using now lemma 3.2 and the classical Cauchy-Lipschitz theorem we get that (3.27), (3.28) has a unique solution $z \in C^1(0,T,Z)$. It results that (3.11), (3.12) has a unique solution $\bar{u} \in C^1(0,T,V)$, $\bar{\sigma} \in C^1(0,T,V)$ and we get the statement of theorem 3.1.

REFERENCES

- [1] Duvaut, G., and J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris (1972).
- [2] Djaoua, M., and P. Suquet, Evolution quasi-statique des milieux visco-plastiques de Maxwell-Norton, Math. Math.-Appl. Sci. 6 (1984), 192-205.
- [3] Suquet, P., Sur les équations de la plasticité; existence et régularité des solutions, Journal de Mécannique, 20(1) (1981), 3-39.
- [4] Suquet, P., Evolution problems for a class of dissipative materials, Quart. Appl. Math., 38 (1981), 391-414.
- [5] Ionescu, I. R., and M. Sofonea, Quasistatic processes for elastic-visco-plastic materials, Quart. Appl. Math., 2(46) (1988), 229-243.
- [6] Djabi, S., and M. Sofonea, A fixed point method in quasistatic rate-type viscoplasticity (to appear in Applied Mathematics and Computer Science, 3(1) (1993)).

UNE METHODE DE MONOTONIE EN VISCOPLASTICITE QUASISTATIQUE

Dans cet article on considère un problème initial et aux limites décrivant l'évolution quasistatique pour quelques modèles viscoplastiques semi-linéaires. On prouve un résultat d'existence et d'unicité de la solution en utilisant des arguments de monotonie suivis d'une technique de type Cauchy-Lipschitz.

Seddik Djabi, Mircea Sofonea Université Blaise Pascal (Clermont-Ferrand II), Mathématiques 63177 Aubière Cedex, France