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1. Introduction

The conservation laws (or path-independent integrals) in shell theory have
been consider by various authors [1], [2], [3]. In this paper, we examine similar
type of integrals for nonlinear elastic shell theory in the context of thin shell
theory obeying Love-Kirchhoff’s hypothesis.

Path-independent integrals in shells have been considered by Bergez and
Radenkovi¢ [1] and Bergez [2]. However, they did not place any restrictions on
the geometry of the shells and, based on the considerations on invariance, it is
obvious that their integrals are not path independent in general.

Nicholson and Simmonds [3] have shown - in the context of shallow shell the-
ory - that Sanders energy release rate integral is path—-independent for all mid-
surfaces geometries, Lo [4] examined path-independent integrals for cylindrical
shells and shells of revolution. He concluded that path- independent integrals
do not exist in general for shells except the ones which enjoy a high degree of
symmetry.

Recently, a new method for the study of conservation laws has been proposed
and used by Kienzler and Golebiewska-Herrmann [5] in the context of higher—
order shell theories. In this paper our intention is to derive conservation law of
J integral type using invariant characteristics of variational principles. These
integrals are also related to energy release rates associated with translation.
Finally, one of the integrals is applied as an example to illustrate the theory.

2. Equations of variational invariance

Let £ = €4 (o = 1,2) be the Gaussian coordinates of the middle surface
of a shell, u;(€)(: = 1,2,3) arbitrary vector fields, respectively and L is the
Lagrangian density.

We can define a special form of Noether’s theorem which is used here to
derive the conservation laws [6]:
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Theorem:. If the fields u; satisfy the corresponding Euler-Lagrange equations

E(L), = 0, then the L remains infinitesimally invariant at u; under the small
transformations, if and only if u;, also satisfies

aL
f [Lr:ra + auilap,-] ngdl =0, (2.1)
G

where the vector p; is given by

pi = Pi — Uija%a,
C is the smooth closed curve, bounding S and n, is the unit normal (in S) to C'.
As a special case we consider

oy ?E DI -8i = u! i = —'H-jlaﬂ'd {2'2}

which represent a family of coordinate translations and leads us to the conservation
law which is of a special interest for us.

Then the conservation law (2.1) reads

oL
Bhai e e | = :
f[ ; auilaul]mdi 0 (2.3)
cC

This is the integral we are very familiar with, whose component along crack line
is the Rice’s J-integral [7].

3. Nonlinear shell theory

The starting point of the study is the elastic shell theory given by Budiansky
and Sanders [8] and Koiter [9]. Only the elements of the theory are given here
and details can be found in [9], [10].

The displacement vector u of a material point in the middle surface of the
shell is given by
u=u"a; +wn (3.1)

where u,, w are the surface and surface-normal components of the displacement
vector and a, = r 4, surface base vector.

The membrane strain measures ¥, given in terms of these components
(ua,w) and rotation are

1
Jap = 3 (qub =5 “Ha) — bapw, (3.2a)
Pa=w,+ bLu;, (3.2b)

where bl is the (mixed) curvature tensor of the middle surface.
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The mid surface strain tensor vgs and the tensor of change of curvature kab
can be expressed in the following forms [10]:

' 1
Yab = Yap + §¢'u¢b: {333}
kgjp = —wqp — f}L]aug = bf,ﬂ”a = ﬁi“ﬂa + b bpyw. (3.3b)

For elastic thin shell, the stored energy function W(T,kf is quadratic in ¥
and k:

1 i 1 ia
Wy, k) = 'E'H““ YabYim + 'ih DI e s ki - (3.4)
So the constitutive equations can be given as
W ow
Nub - a - Hd“m‘ﬂm, Mdi — = h"““‘k;m (3_5)
ﬁTdﬁ akui

in which N M2 denote the membrane force tensor and the bending moment
tensor, respectively.

In the absence of surface loads, they satisfy the following equilibrium equa-
tions

(N — b ™) |, — bf (N6s + M$) =0 in, (3.6a)
M 4+ ba (N — b M™) + (N**¢3) |, =0 in S. (3.6b)

The above equations are exact and are derivable from the energy principles [10]
applied to the deformed shell.

4. Conservation laws

If we identify the vector field u; as [us,w] in relations (2.3) we obtain
expressions adapted for elastic shells.

Defining now a Lagrangian density (with negative sign) by the relation

~L (uaq, tapp, w, wy) = W(7Yas, kas) (4.1)
where the stored energy function is denoted by W, it may be verified that
w
g‘_". = N"b{ ¢y — M" by, _——aa = N — M — M°'B,
Ug Uald (4.2a)
aa.i aie """I'mbbab e Mabbgb;h g_ui - Nﬂbﬁﬁa + Mf::lb'
W “b (4.2b)

The equilibrium equations can be directly derived from L as Euler-Lagrange
equations

o B A BN Lo s
B(L)ui = ou; (5u='|b)1b o e -
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ie. the relations (3.6) coincide with Euler-Lagrange eqns (4.3).

Using the above expression for L (4.1) we can rewrite (2.3) to derive the
conservation law for elastic shell theory

oW ow
/ [W&ub - mudu - m‘lﬂh] npdl =10 (44]

The conservation law (4.4), using the above expression for W, W, _,, and W, ,
is given by

Ji= / [I-Vn; — Teugy — Muwinyt — QHJ“] dl (4.5)
3.
where
T =T"a, +(n (4.6)
the boundary force,
T% = (N — b2 M) ny — b MPny, (4.7a)
a
Q= (N"p + MgH) no + 3z (M*tams) (4.7b)
and 5
. w
M, = M*ngny, Wip) = *a—I;, (4.7¢c)

is the bending moment, while t, s, n is the boundary triad on C. Equations
(4.5) represent conservation law for elastic shell theory which is believed to be
new.

Proof of the path independence of the integral (4.5) is straightforward and
the details are shown in [4].

5. Energy release rates

While the proof of the path independence of the integrals in (4.5) is straight-
forward, it does not afford any particular physical insight in the interpretation
of these conservation laws. In this section we relate the integrals in (4.5) to
energy release rates associated with translation, thus identifying them with the
corresponding conservation laws in elasticity [11].

Denoting J to be the £ = & component of the integral (4.5), the path
independent integral takes the form

= Jf = f (Wﬂg o Tauu_f - an[“},g - lef] dl (5.1]
c

This result can also be obtained by considering the total potential energy rate
P of a shell with a crack, in the absence of body forces:

Pla)= | Wds— | (Taua + Mnw(n) + Quw) dl (5-2)
[*]
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Fig. 1

where Cp denotes the contour of the shell on which the tractions T,, M, and
Q are prescribed, (4.7). The tractions are assumed to be independent of crack
length, a, and the crack surfaces are taken to be traction free, Fig. 1.

The stored energy function W is defined by (3.4), us, w are the correspond-
ing surface and surface-normal displacement on an arc length dl, and S is the
middle surface boundary.

Differentiating (5.2) with respect to a, we obtains:
dP dw du, dwp) dw
H-]—ds—f(Ta‘a:+MﬂT+Qda) di (5.3)

Co

The contour of line integral can be extended along the boundary Cp of the
shell since du/da, dw(,)/da, dw/da are on the boundary Cu, where u, w,
and w are prescribed independently of a.

If the position of material point can be also defined relative to a Cartesian
coordinate system X; = £; — ad;, attached to the crack tip, it fcllows that

d d d Oz; d d

32" a0z 0a 92 0& 64)
Hence, (5.3) becomes
i iy,
da da _EJE;) =i
5
(5.5)

Oug  Oua Bw(n) awgn]) dw duw
![‘(3& 351)+Mn( da i3 +Q(E_£)] d
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Furthermore W pu—_— W Ok
_ OW 8y i
da ~ v, 9a ' Ok; Oa (5.6)

Using (3.3) and (3.5.. a1 =r some algebraic calculations, we obtain

dw Oug OW(n) Jw

—_— s = 7. — — inthod | 5.7

da = [("Eﬂ: - da +Q3ﬂ)d (5:7)

5 Co

where we have made use of the equilibrium equations (3.6), the divergence the-
orom and an expression for surface tractions (4.7).

Therciore, >quation (3.5) reduces to
dP ] Ol / (. By 311?{,;} 31.:‘.!)
e —_—ds — Ta——--i-M - di 5.8
da I3 L 961 ok Qafl (58)

g Co

which upon an application of the divergence theorem becomes:

_dp _ [(n2 s a2 020)] )
- _/{stz [(Taa£l+ﬂfn TR T di (5.9)

0

The crack driving force, G, can then be calculated as the energy release rate In
propagating the crack along an infinitesimal distance, 1.e.,
dP

G=-— (5.10)

This result is the same as that obtained by evaluating the path indepen-
dent integral (5.1) on a contour enclosing a crack tip. Therefore, where (5.4)
applicable, the value of J is identical to the crack driving force, G:

J=G
giving the physical meaning to J integral for the nonlinear elastic shells.
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DIE KONSERVATIONSGESETZE UND DIE GESCHWINDIGKEIT DER
ENERGIEBEFREIUNG FUER NICHTLINEARE ELASTISCHE SCHALLEN

In dieser Arbeit wird die Verwendung der Noether’s Theoreme sowie die
Methode zur Gewinnung der Konservationsgesetze erortert.

Auf den Beispielen der nichtlinearen elastischen Schallen wird die Gruppe der
koordinaten Translationen genommen, welcher der entsprechende Konservations-
gesetz von J-Integral Typ entspricht, dessen Anwendung in der Bruchmechanik
bekannt ist. Dadurch wird auch seine Verbingung mit der Geschwindigkeit der
Energiebefreiung gezeigt.

ZAKONI KONZERVACIJE I BRZINA OSLOBADJANJA ENERGIE
ZA NELINEARNE ELASTICNE LJUSKE

U radu se razmatra primena teoreme E. Neter kao metoda za dobijanje
zakona konzervacije. Iz osobine invarijantnosti varijacionog principa u odnosu na
grupu infinitezimalnih transformacija izvodi se opsti oblik zakona konzervacije za
vektorska polja.

Na primeru nelinearnih elasticnih ljuski, uzima se grupa koocrdinatnih
translacija i njoj asocira odgovarajuci zakon konzervacije tipa J-integrala neza-
visnog od putanje. Zatim se pokazuje da je brzina oslobodjanja euergije pri
razvoju prsline, za klasu problema koji zadovoljavaju uvedene pretpostavke jed-
naka vrednosti J integrala.
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