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1. Introduction

This paper is the result of an attempt to use the idea of an absolute or covari-
ant integral for determining the displacement vector coordinates from infinitesimal
strain tensor coordinates, prescribed in an arbitrary curvilinear coordinate system.

2. An absolute or covariant tensor field integral in Euclidean space

It has been shown in [8] that, for an absolute integral? (or a covariant one) of
the absolute differential of a sufficiently smooth vector function v, from the point
P, to the point P on an arbitrary curve in Euclidean space, one can write:

v i .
(1) /ppy.r"(M,P)Dv'(M) — WP(P) = v (Po)g? (Po, P),

where M is the “current” point of integration, and g is the shifting operator
(“Euclidean shifter”; [1, p. 806]); Einstein’s summation convention for diagonally
repeated indices is used, and all Latin indices have the range 1,2, 3.

It is clear that relation (1) can also be extended on any tensor field; e.g. for a
second order tensor ¢ we shall have:

v
(2) ’ Pg'.m(M, P)g¢’ (M, P) Dt;j(M) = tmn(P) — tij(Po)g'm(Fo, P)g"n(Fo, P) .
The last member in this expression (as well as the last member in (1)), being
obtained by a parallel displacement of a tensor t;;(Fo), is a covariantly constant
tensor field.

1This research was supported by Science Fund of Serbia, grant number 0402, through Math-
ematical Institute.

?For the first time this notion was introduced in [3].
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3. Determination of the displacement vector coordinates
corresponding to the given strain tensor coordinates
in an arbitrary curvilinear coordinate system

Let us concern ourselves with the proof that the three-dimensional compati-
bility conditions:
(3) Cijkl = €ik ji = €l ki + €kt =0

(where e is the Eulerian infinitesimal strain tensor, while the comma denotes
covariant differentiation with respect to the three-dimensional metric tensor) are
necessary and suflicient conditions for the existence (in a simply-connected region)
of a displacement field » such that:

(4) U + Ui = 26,‘j .

We shall proceed similarly as in [9, pp. 56-57], but without supposing that rectan-
gular Cartesian coordinates are in question. Let us start from the relation (ef: ez

with (8.1).in [9]):

(5) Ui j = eij —wij,
where u; ; are the displacement gradients, and:
(6) wij = 30 = uiy)

are the linear Fulerian rotation tensor coordinates. From (5) follows that a dis-
placement vector absolute differential is:

(7) Du,- = Uy d.l,‘j = Uy ; I)I‘j — (6,‘j = uJ,'j)DI‘j ~

where 7/ are the coordinates, in curvilinear coordinates z7, of the position vector

r. If we perform, according to (1), an absolute integration of the relation (7), we
shall have:

v
(8) tm(P) = ui(Po)g', (P, P) = /P 4hm(M, P) Dus(1)

v
= / g':m(M, P)[e'-j(M)—w,-j(M)]DTJ(ﬁf)
Pg P

= /v ' (M, P)es; (M) D (M)—
P,

o P

_/v 94 (M, P) Dlw;(M)r? (M)}+
PP

v
+/ g'm (M, P)ri (M) Dw;;(M) .
Py P

From (6) it follows:
(9) wijk = 5(Wi ik — i jx) = 'lj(uj,ki + up i) - %(uk,.‘j + uj k5)

= €k — €kij,



a . SiEs = . ey . =t
On the derivation of E. Cesaro’s formula in curvilinear coordinates o

and:

(10) Dwi; = wij i d=¥ = (ejii — exij) Dr¥,

so (according to (2)) an absolute integration of this relation gives:
(11) Wint(P) = wij (Po) gt (Po, P)g (Po, P)

v
:/ 9’ (M, P)g (M, P) Dw;; (M)
PoP

= L . gf,n(f\f, P)g-’:l(ﬂf, P)[ejk,i(ﬁf) o ek‘..j(}wn Drk(M) -

Using (10) and (11), and after some indices exchange, we can rewrite (8) in the
following way:

v

(12) um (P) — ui(Po)g’(Po, P) = /P Pg':m(M,P)eU(M) DI (M)-

— Wi (P)P (P) 4 wij(Po) (Po)g' m(Po, P)+

L7
+/ ¢ (M, P (M)ejr,i(M) — exi ;(M)] Dr¥ (M)
PolP

v
N ./p " g' o (M, P){eix (M) + 9 (M)[ejk,i(M) = exi (M)} Dr¥(M)—

= '-"’ij(Po)gl_‘m(Po, P)Q{;(PO, P)T"(P) + ng(Po)T‘j(Po)gfm(Pg, P)—
v
e ]P (M, P) (M, P)lest (M) = exi (MO (P) Dr (M),
finally obtaining:
(13)  um(P) = ui(Po)g'm(Po, P)—
— wi; (Po)g' m(Po, P)[g’ (P, P)r'(P) — 1 (Po)]+
v
4 f ¢ (M, P){eix(M) — [ (M, P)r(P) = P (M)]
Py P
x [ejr,i(M) — exi j(M)]} Drk(M)

and that is the coordinate form, in arbitrary curvilinear coordinates, of E. Cesaro’s
formula for determining the displacement field from a prescribed infinitesimal de-
formation field. Concerning the integrability of expression (13), it can be proved
by checking the path independence conditions for the corresponding line integral.
These conditions read:

(14)  {ex(M) = [¢/ (M, P)r™(P) =/ (M)][eji,i(M) = exij(M)]} i =
= {ei(M) — [¢7,n (M, P)r™(P) = 7 (M))[ej1i(M) — e j(M)]} & .
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That they are satisfied follows from the fact that, having in mind the performing
of covariant differentiation at the point Af, we can (simiiarly as in (9, p. 57]) show
their equivalence to the compatibility conditions (3).

4. Example

Let us determune the displacement filed for an infinitesimal relative strain
tensor prescribed in cylindrical polar coordinates {z!, 22, 2%} = {p, ©,2}:

sin(2¢) pcos(2¢) 0
(15) {{’.'j} =k peos(2p) —p? sin(2¢) 0
0 0 0

(k is an infinitesimal constant), if the displacerient u;(Pp) and rotation wi;j(Po) at
the point Py(p =1, = 0,z = 0) are equal to zero.

‘laking into account that the only three Christoffel symbol coordinates different
from zero, In the cylindrical polar svstem, are:

(16) [y = —p, == 1

it 1s casy to show (s. e.;g. [7, p. 45]) the covariant constancy of the prescribed
infinitesimal strain tensor:

(1?) Cii.k = .

From the relation (17) it iramediately follows that the compatibility conditions
(3) are satisfied, so we can use the formula (13), which, because of (17) and the
assurnptions u;(Fy) = 0 and w,;(FPy) = G, reduces to:

(18) wn(P)= [ vp ¢ (M, P)ea(M) Dr*(M).
Using the equality {Dr*} = {dz*} = {dp,dp,dz} as well as the fact that e;3 =
esi = 0 (s. (15)), we can present (18) in the following form:
(19 w(P)= [ {088 PeasM) + 0% (M, Plen(A0)] dp(31)+
(9",(M, P)era(M) + g%, (M, P)ega(M)] do( M)
w(P)= [ (60, Pless(M) + 925 (M, Phen (M) do(M)+

(9% (M, Per2(M) + g°,(M, P)ega( M) de(M))

IIS(IU) —% |

liowever, the coordinates of the shifter which relates to the points M(p,¢,z) and
P(It,®,Z), in the case of cylindrical polar coordinates, are equal (s. e.g. (17.2) in
(1], (3.A.23) in [6] or p. 11 in [7]):
_ cos(p — D) Rsin(p — @) 0
(20) {g'm(M,P)} = ¢ —1/psin(p—®) R/pcos(p—P) 0
0 0 1
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Having in mind (15) and suitably choosing an integration path® from Py to P, e.g.
over the points (/2,0,0) and (R, ®,0), we can reduce the curvilinear integrals in
(19) to ordinary ones:

R
(21) By ] = L{]1 [cos(p — @) sin(2p) — sin(p — P) cos(2p)]|p=0 dp+

®
+ [p cos(p — @) cos(2¢) + psin(p — @) sin(2¢)]lp=n d(p}
0

R
uz(P) = kR{/ [sin{p — @) sin(2¢p) + cos(p — D) cos(2¢)]]p=0 dp+
1

¢
+ /0 [psin(y — @) cos(2p) — p cos(yp — @) sin(2¢)]l,=n dw} :

Now we immediately obtain that the first and second displacement field coordinates
are:

uy(P) = k[Rsin(2®) — sin(P)]

(22) us(P) = kR[R cos(2®) — cos(®))

and these are exactly the expressions obtained in [7] (p. 47), in the same example,
by solving a system of partial differential equations which follows from the starting
system (4) after explicitly expressing the covariant derivatives in the cylindrical
polar system.

5. Concluding remarks

It has been explained in [8] how the idea of an absolute or covariant integral
(which was postulated in [3]) imposes itself naturally in Euclidean space. Namely,
following J. L. Ericksen’s concept of integration in curvilinear coordinates (s. p. 808
in [1]), an invariant integral of the absolute differential of a tensor field has been

established in the form (1), i.e. (2).

The notion of such an integral here is used in order to carry out E. Cesaro’s
formula entirely in coordinate form in an arbitrary system of curvilinear coordi-
nates. Of course, in the case of Cartesian coordinates (when the Euclidean shifters
are the Kronecker delta), the formula (13) reduces to the usual one (s. e.g. p. 41 in
[4] or p. 57 in [9]).

It should be noted that the derivation of E. Cesaro’s formula in direct notation
(i.e. without indices introducing in the corresponding vector or tensor field kernel,
thus without pointing out to the coordinate system in question) can be found in [2],
p. 63. On the basis of formula (2.2.2) derived there, one can obtain its coordinate
form (13) in arbitrary curvilinear coordinates by consistent use of Euclidean shifters;
in that case, integrals of form (1) or (2) (obtained in [8] by arbitrary curvilinear

3Path independence of the curvilinear integrals in (19) is provided by the above mentioned
satisfaction of the compatibility conditions.
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coordinates introducing in integral sums of the corresponding limit process) should
arise.

Finally, we emphasize that this paper shows, on the example of E. Cesaro’s
formula, that the derivation in the coordinate form of various integral relations in
Euclidean space should not be limited to Cartesian coordinates, which is usually

motivated by procedural simplicity and the wish to avoid “some formal difficulties”
in using curvilinear coordinates.
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SUR LA DERIVATION DE LA FORMULE D’E. CESARO
EN COORDONNEES CURVILIGNES

Dans cet article, en suivant le concept d'intégrale absolue ou covariante dans
Pespace euclidien, on propose une procedure d’intégration des relations entre les
composantes d’un tenseur de déformation et d’un vecteur déplacement en coor-
données curvilignes quelconques.

O IZVODENJU FORMULE E. CEZARA
U SISTEMU KRIVOLINIJSKIH KOORDINATA

U radu je, u skladu sa konceptom tzv. apsolutnog ili kovarijantnog integra-
lienja u euklidskom prostoru ([3], [5], [8}), izvricno integraljenje veze pomeranja i
deformacije u proizvoljnim krivolinijskim koordinatama.

Zoran Draskovié
Matematicki institut
Odeljenje za mehaniku
Kneza Mihaila 35

11000 Beograd, Jugoslavija





