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Introduction

Conservation laws (or path- mdependent integrals) for linear and non- -linear
materials have been considered by various authors [I—4]. This is probably due
to the close relation of the laws to the pathi-ndependent mtegrals widely used in

fracture mechanics [1, 3].

Path-independent integrals in shell theory have been considered by several
authors [5—6]. Shells are finite bodies, and hence the boundary conditions, at
the shell faces should be explicifly satisfied. Intrinsic geometry of a shell imposes
the necessity of using curvilinear coordinates, and, related to them, the special

feature of Riemannian geometry.

Path-independent integrals in shells have been considered by Berger and Ra-
denkovi¢ [5] and Berger [6]. However, it appears that they have not placed any
restrictions an the geomotry of the shells and based on the ocnsiderations on in-
variance in this study, such integrals are not path independent in‘general. Lo [7]
examined path-independent integrals for cilindrical shell and shell of revolution:
He exepcts that path-independent integrals do not exist in general fon shells except
those which enjoy a higher degree of symmetry. o

Recently, a new method for the study of conservation laws has bzen proposed
and used by Kienzler and Golebiewska-Herrmann [8] in the context higher-order
shell theories, for finding various conservation laws. The starting point in the ap-

proach taken in [8] wos to establish the most general variational principle for shell,
The conditions for possibble conservation laws can be derived from this prmCIple

It seems to be worthwile to study conservation laws in the context of thermo-
elastlc membrane theories.

In this paper our intention is to derive conservatlon laws of - J type mtegra
using invariant charactersstics of variational principles. :

1)
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Variational principle

Variational principles unite various fields of natural science in a special way,
and as such are often used in many fields of physical and technical sciences. They
have an invariant property and a serries of invariant characteristics in relation to
infinitesimal transformation group so that they enable the derivation of the cor-
responding conservation laws.

Classical variational principles have been used to derive equilibriumeequa
tions from stationary conditions of the functional.

Let £, (e=1, 2) be the Gaussian coordinates of the middle surface of a shell,
u;(£)(j=1, 2, 3) and ¢ (£) be arbitrary vector and scalar fields, respectively, defined
and twice continuosly differentiable on S. All fields and their behaviour are then
expressed in terms of these variables and derivatives with respect to them.

Throughout the paper, the usual summation convention is used. Repeated
Latin indices represent summation over the range (1,2, 3) and repeated Greek
indices, over the range (1, 2). A double vertical line denotes covariant differentiation
with respect to &,.

Now we define a functional I on the class of given fields X=X (&, u (€), ¢ (£))
by the formula

Iw, )= [ L(Y)ds, (2,1)

where L=L (Y) is a real scalar function defined and diferentiable for all values of
its arguments

Y =Y (4, Ujjja, ¥, Ea)

and dS is the element of area on the middle surface.

By this, variational principle is mathematically expresed such that integral
variation (2.1) is equal to zero

31-0 2.2)

under the hypotesis that the considered system on the boundary is specified.

The symbol 3 denotes a variation when the bounderies are fixed, whereas
3 will be used for more general variations, with varying boundaries.

Under this condition, variational equation (2.2) is equivalent to Euler-La-
grange equations
oL oL

ou;  OUjjjx ||

=0, (2.3)

When this problem is correctly formulated, besides differential equation of motion
(2.3) it also neccessarly gives the number of boundary conditions. It is impossible,
however, to obtain at the same time conservation laws because the class of variation

is too restricted. In addition to the local variation 3 “convective variations” &
related to the variation of the independent variables £,, have to be admitted. This
leads to a variational principle with varying boundaries [8].
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For the action integral (2.1), we introduce the small transformations of de-
pendent and independent variables as:

E.va = im 3 8 Eu (2'4)
and

uy=u; () +du

Y=¢E)+3¢ (2.5)

where 3%,, du; and 3§ represent the variations of £,, u; and ¢, respectively. Or
in an expanded form:

=ty + By + 0 (n?) (2.52)

Y=9=y0n+0()
where the quantities 8%, =a,, 8 u;=p;, 3 Y=y etc. are taken to be of infinitesimal

order and 7 small parameter. With these transformations, the action integral (2.1)
changes into

1 (@ )=[L(¥)dS (2-6)
S

Making use of expansion tehnique, we may calculate:

u; (B) =1; (B + S E) =1 (B) + 140 8 E, + 0 (3?)

$E=EAIE)=YE) + 3L +0(3)
Using all the above expression ., u;(£) and 47 (), we can derive variation:
Suy =8 u; + w5 3 €, + 0(3%)

3¢=3¢+¢.3E,+0(3?) (2.7)
8ty = & U4 + ] g 3 + 0 (37)

with ;, and ¢, representing the covariant derivatives of u; and ¢ with respect

to £,, and 3 means a variational operator only due to the transformation of variables
uj, ¥ and u;, themselves:

S u;=u; () — 1 ()
Y= - ()

su,-i; ¢=_l;j Il a(ﬁ)““f | (E)
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In addition, the new elemeiit of area ¢S on the middle surface dS becomes

dS=[1+ 8%, ,]dS. (2.8)

{470
Substituting (2.7) and (2.8) into (2.6), after some algebraic manipulation, we obtain

SI=1-1I= (2.9)

L - I\ <
[leve 25 mm) a0 Yias
L QUi - 4o ) e O By,
s

ou; ()uj”g
In fact, (2.9) represent a basic expression for variation action & /. Substituting 3%,
duj and 3 by their values from (2.5), we obtain

L R Rp gy
ST f[(“ Pk ,,i) I q( Ao _‘)VL)pj ds, (2.10)
‘ w. Flla,. OF OUj|x|a OU

\7' !

Y

o5

ﬁfii_tre the vector p; and scalar ¢ are expresed by:
Pi=B;—uj| oy
4=Y—¥|| 0

From (2.10) we come to the conclusion: if the fields (u;, V) satisfy the corresponding
Euler-Lagrange equations (2.3), the functional (2.1) remains infinitesimally in-
variant at (u;, ¢) under the small transformations (2.5a) if 8 /=0.

The requirement of the stationary value of the functional 7 gives

L
f L o, + "'()_'L"/)j dS';'fa qdsS—0 (2.10a)
W ()llj‘}x | oo : ()';) '
< s

Equations (2.10a) which we call the equation of variational invariance, is the mathe-
matical version of the celebrated Neother’s theorem.

* 1f we apply the Green theorem to the first term of (2.10a), we obtain a new
integral

; L oL
s i f [L»oc, -f--—"—-~p,-] 0, d) + f “Zgds=0, - (1)

Hjhfx

c
where S is the simply connected region on the middle surface bounded by a smooth
closed curve C, and n, is the unit normal (in §) to C.

We now proceed to write the integral form of the conservation law (2.11)
which corresponds to the particular transformations (2.5a).

By taking all of the arbitrary variation (2.4, 2.5) except one in turn, we obtain
the corresponding conservation, laws.
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As a special case we consider first:
Gf.u:O, Bj:féoa T:O

pi=8 q=0.
Then we introduce the family of transformations

S
gV

X a

;= u;+ B
b=

which represents rigid body translation (infinitesimal).
The corresponding conservation law when there are no body forces, i.e. all F=0,

(2:11) now reads
‘[—QLn,dL~Q
0 Ujl|e
C

o, =0,B,=0,v#0

And if

p;=0,9=x

we consider a family of transformations
Cu = Ga
HJ, = llj

b=y +vy

which represents translation of amount 7 of scalar function ¢, then eqn (2.11) gives
to the rather known trivial statement

fﬂédsza
04

5

A new class of transformations:
!

Pi= —Ujjja Oy, § = — Y||x %y

and the coresponding family of transformations
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which represent a family of coordinate translations and leada us to conservation
law which are of a special interest for us

Then the conservation law reads

é[[, Sa{, *‘*Q*L : uj;a]nﬁ dl — % LIJ:! «d8=0, (2]2)

ouj p

c

This is the integral we are very familiar with, whose first member is the J-integral
[1] of fracture mechanics.

Nonlinear membrane theory

The starting point of the study is the linear elastic shell theory of Budiansky
and Sanders [9] and nonlinear shell theory of Budiansky [10]. Only the essentials
of the theory are given here and details can be found in [9, 10].

The displacement vector U’ of a material point in the middle surface of the
shell is given by

U —u*xly +w N (3.1

where u*, w are the surface and surface-normal components of the displacement
vector.

The membrane strain mesaures E,, given n terms of these components (u,,
w) is

1
E, 5= " (Ug|g+ Ugia) + DogW (3.2)

—

while the rotation is ®,—=—w,,+b,“u, and b,7 is the (mixed) curvature tensor of
the middle surface

We restate here briefly the essential relationships of a nonlinear membrane
A

theory. Details can be found in [11]. The finite strain measure E,, given by

A 1
By Byt (7 oy @, ) (3.3)

where the linear part of the stretching strain E,, is given by (3.2), @, is he same
rotation as before, and

(/13 == um§3 +- bma W, (3 4)

The Kirchoff stress-resultant n** is related to the membrane stress-resultant by

S \/ g_ N (3.5)

where g=det (g).
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For nonlinear membrane theory the equilibrium equantions, with no pressure
loads present, are [11]:

[(gys + dys) 1) x — b, Py n** =0
. ((l)ﬁ ”I‘J) a be (g.l,b + (/_‘_:5.) ”1,5 e 0 (36)

The above equations are exact and are derivable from the Principle of Virtual Work
applied to the deformed shell.

If we indetify the vector field w; as [u,, w] and the scalar field ) as 6 which
represents temperature, in relations (2.1) and (2.12) we obtain expressions adapted
for thermoelasticity membrane.

Defining now a Lagrangian density (with negative sign) by the relation

L(uy, Uy 13, W, Wia, 0, E,) H«’(f“. 0) (3.7)

where the free energy density per unit area is denoted by W, it may be verified that

) L F
x b., ®, n*, b (g, +d,.)n*°
ou. du, p
oL : , oL . ) L .
= n**(g,q +d, ) ,7; —n* @, - -8, (3.8)
ow ow g 09

where Se is the entropy.

The equilibrium equations can be dircctly derived from L as Euler-Lagrange
equations:

)L L U o oL
: il ‘ 0. (3.9)

U, ¢ g ou, OW 411y, OW

i.c. the relations (3.6) coincide with Euler-Lagrange eqns (3.9).

Us:ng the above expression for L (3.7) we can rewrite (2.12) to derive the
conservation law for nonlinear membrane theory

' W W oW
/ [WS,_'.NL i u, s+ 0 © ;,]n.pd/ /( 0;,dS=0 (3.10)

. Gl ' OWix 00
:

The conservation law (3.10), using the above expression for L, u, 4 L, w
and L, 6 is given by

o

J=f[Wa T u, o= 0w ]di-[5,0,d5-0 (3.11)
C S

where W is the free energy per undeformed area of the middle surface such that
it 1s related to the Kirchoff stress resultant by

I [ oW oW

( e (3.12)
2 0 E‘x,’:. 0 b,’ix
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and along any curve C with normal » (in 1) in the underformed state, the edge force
per unit underformed lenght Q' is

Q' =T*X|,+QN (3.13)
where
Ta - (ga,a 5 docﬁ) n'® hy

= — P, n*tp,.

Equations (3.11) represent conservation law for nonlinear thermoelastic
membrane theory which is believed to be new. This eqn. reduces to the conservation
law obtained in [7] for nonlinear membrane theory when the Lagrangian density

L in (3.11) is independent on the temperature without the integral fS(,B, LS.
s

Apart from its inherert theoretical interest, the conservation law made ex-
plicit is of practical importance in connection with the direct asymptotic analysis
of geometrically induced singular stress concentrations, such as those occasioncd
by cracks and notches. For example, the stress intensity factor can be determined
by calculating the J-line integral over an arbitrary path C surrounding the crack
tip and by calculating the area integral over the area (A4) enclosed by this path.
Such applications may be found in [12].
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DIE ERHALTUNGSGESETZE IN DER THERMO - ELASTISCHEN
THEORIE DER MEMBRANEN

In dieser Arbeit werden die Invariantheitsbedingungen der Lagrangeschen
Funktion (oder des Aktionsintegrals) im Bezug auf die angenommen Transformation-
sgruppen, die zu den entsprechenden Erthalungsgesetzen fiihren, erortert.

Die gewonnenen Erhaltungsgesetze in der allgemeinen From wurder auf dic
Probleme der thermoelastischen Membranen angewandt und daraus die entspre-
chenden Gesetze abgeleitet.

Es 1st zu bemerken, dass eines der gewonnenen Gesetze die Verallgemeinerung
des bekannten J-Integrals in der thermoelastischen Membranentheorie darstellt.
Auch wird darauf angewiesen. dass in der Temperaturabwesentheit dasselbe Gesetz
auf das von der Bahn unabhingige Integral, das Lo [7] fur die elastischen Mem-
aranen crhielt, abgeleitet wird.

3AKOHMU OAPXAMKBA ¥V TEPMOEJACTMYHOJ TEOPUINM MEMBPAHA

Y pay cy pasMarpanu yciaoBu uHBapujantHocti Jlarparkujana (M akiu-
OHOI MHTEIpajia) y oAHOCY HA MPUXBAT/EHUBC TPYIC TpaHcPopMalinja Koje J0BOjIe
10 ojarosapajyhux 3ckoHa oapkKatba.

JloOujeHn 3aKOHM OJPK b Y ONIITO] (POPMH HPUMEILECHH €Y Ha Hpodiem
[SPMOJJIACTHYHUX MeMOpaHa W W3 HbUX u3BeldeHH oaroBapajvhu 3akonu. EBu-
JZHTHO je JI1 je/aH 0J1 100ujeHMX 31KOHA [pe/ICTaB/ba TeHepan3alujy mo3HaTor
J-UHIErpaia y Teopuju TepMO2ICTHYHUX MeMOpaHa. McTo Tako y3akaHo je 1a
C2 Y OTCYCTBY TeMmilepaType MCTH 3aKOH CBO/IM HA MHTEI'PAJ He3aBHCAH O/ NMyTakbhe
no0ujen ox ctpade Jlo [7] 32 cayua] enactuuHe MeMOpaHe.
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