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1. Basic equations

The equations determining the stresses in composite and prestressed struc-
tures with uncracked sections are:

— stress-strain relations for concrete and for all types of steel,

— Navier’s assumption at the same time which represents the compatibility con-
ditions of the unhomogeneous section,

— equilibrium equations of the section.

1.1 The Integral Form

The integral stress-strain relation for concrete (¢) is symbolically written in
the form:

(1]) O'c:EcaRE:,

(see Appendix, item 1). The shrinkage is omitted, because it is unimportant for
a further analysis. Prestressed steel (p), steel member (n) and reinforced steel (m)
follow Hooke’s law:

(1.2) or = Exe, k=p,n,m.

In special cases the unhomogeneous cross-section does not contain all steel parts.
Navier’s assumption reads:

(1.3) e="N-+ny,

1 =7 (x,2 ) is a normal strain and x = x (x, t, to) the change in the curvature
of the bar axis (see Appendix, item 2).
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When common strain ¢ and stresses are eliminated from the above men-
tioned equations, the basic equations are obtained. They are relevant to an arbi-
trary unhomogeneous section :

EuA; Rll N+ Ey Si Rlz x=N,
(1.4)
E, Si}é217}+Eu Ji Rez %= M,

and represent a system of unhomogeneous integral equations. N = N (x, t, tg) is
the axial force and M = M (x, ¢, 7o) the bending moment.

The principal values of the operator matrix of system (1.4) are:
(1.5) Ru=vul+vR, h=12.
Their inverse operators are F (h = 1, 2) and the following holds for them:

(1.6) RiFo=1, RiFu—FyRy, h=1.2.

—_

The solution of basic equations ( 1.4) is expressed through inverse operators Fy:
1 o 2 N 1 Si, o oM
Eyn=—— 2 F1+ 8y1 F3) — + — 12 — (F1—F3) —,
u” A':'(Y 1+ 3y 7 ATYAa-(l B
(1.7)
1 Si & o2 N 1 - ~ M
Eyx=—xyn — (F1—F)— + 31 F1+ 8y Fa) —
u AYT J;-(l Z)Ai AY(r 1+ 82 )Ji’

Functions Fj = F, (Yns ¢, to):g'hl* and:
(1.8) Ri=Ri (Ya, 1, tg) = Ral* =y'31* £ yuR*, = i3,
will be used. The following is also introduced:

(1.9) By=RFy, Bi=Bu(yn t,10)=Bul*, h=12.
Functions B, are called the basic functions. They simultaneously linearly depend
i

* 1 d *
(1.10) Bi=— 1" g, nh—1,,

YTh Th

The relation between inverse operators R; and F, (1.6) can be presented in the
form: ' o I
(1.11) BiKn=1, ByKy=KnBn, h=1p,
containing the operators:
(1.12) Kh=RyF. h=1,2.
It is shown that functions K, = K, (Yn, t, to) linearly depend on the creep function .

(1.13) Kh=RKnl*=yal* 40’ F* = 1* £ yp" @, h=1,2.
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Integration of expression (1.11) yields:
(1.14) By Kn=1%*, h=12.

These relations give the unhomogenecous integral equations whose solutions
are basic functions B;. It means that they are directly determined by creep func-

tion F*. Obviously, the basic functions are relevant to a determined section beca-
use, through quantities vz, they depend on their geometrical properties.

1.2 The Algebraic Form

In the system of equations mentioned, the integral equation (1.1) for con-
crete is substituted by the algebraic one:

(1.15) 6e = Ecol'c e—pec Gcos
where:
1 -
(1.16) SO SN
1+ yr @r 14+ yr @r

yr is a free parameter, the values of which will be later on adopted. In a special
case where this parameter takes the value of aging coefficient % [1], (1.15) represents
th e known AAEM Method.

The basic equations in the algebraic form are:

A S
A Ji
(1.17)
Ser Jer
Eu S;C*Q-FEM ‘L:CK=M+|O(: N() —<+ MO'_ )
A Ji
where:

Ai:=Ai“—(1—:’c) Acr: Si§= _(1—C’c) Scn Jic=-[i—(1—c'c) Jcr,
No = N (x, to, to), Mo = M (x, o, to), (see Appendix, item 2).

The algebraic expressions for stresses can be obtained by incorporating solu-
tions of basic equations into (1.15) and ( 1.2). Therein free parameter yr appearb.

1.3 Special case: Homogeneous Concrete Structure

Equations determining the stresses are:
— stress-strain relation for concrete (1.1),
— Navier’s assumption (1.3),
— equilifirium equaticns of the section.

For the system of principal centroidal axis of inertia, the basic equations re-
duce to two independent unhomogeneous integral equations:
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(1.18) EwAdeRN=N,  EeoleRn=M,
with the solutions:
. ~ N ~ M
(1.19) Eoon=F —, Ewx=F —
44(: J('

where 4; = 4.(x) and J, = Je (x) are the cross-section area and the moment of
j nerua ot this area about the principal axis, respectively.,

The basic equations in the algebraic form are:
(l 20) E,'o “1(: :_’(- 'fj = AV rPe 4.\'0, E(-o J(- :’c ®= AM - Fe ""lfg.

They are obtained when integral relation (1.1) is substituted by algebraic one (1.15)
in the above system.

2. The Generalized AAEM Method

Theorem 1. If in an unhomogenecous section the axial force and the bending
moment linearly depend on functions R} and R;:

(2.1) N=NiRi+Nz Ry+ N3 1*, M= M, Ri+ Mz R+ M 1%,

Ni, ..., M3 being arbitrary time-independent quantities, then functions 7 and x»
determining the deformation of the unhomogeneous section, linearly depend on
functions F; and F:

(2.2) ‘q:an‘-i-nzF;-H;:sl*, %=1 Fi+%2 Fy+ %3 1*;

the corresponding operators Ry, and Fn (h =1, 2) are inverse. Quantities Nis: «
#3 are not time-dependent. The proof of this theorem has been omitted.

Expressions (2.2) could be written even through the basic functions:
(2.3) M= Bi+12 Ba+ms 1%, x=71 B+ Byt %3 1*.

Theorem I represents the Generalized AAEM Method and is relevant to the unho-
mogeneous section of arbitrary geometrical properties.

2.1 Special Case: The AAEM Method

Theorem I1. If the normal force and the bending moment in the homogencous
section linearly depend on the relaxation function:

(2.4) ' N=N; R* + N» 1*, M =M R*+ M, 1™,

Ni, ..., My are arbitrary time-independent quantities, functions 7 and x deter-
mining the section deformation linearly depend on the creep function:

N N, M
(2.5) Econ=jl*+——2F*, Bon =2

[4 c 4 J(,‘

1*-}--%}:*'

3

the operators R and F are invcrse. The proof of this theorem has also been omitted.
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In algebraic equations (1.20) free parameter yr appears throuzh coeficients
C. and pe. Its value will be determined from the condition that for the determined
¢ and 70 and for N and M which change according to law (2.4), valuz 7 i.e. » should
be the same as the one stemming from accurate expression (2.5). This condition
yields the relation:

] 1
(2.6) o= e
LR o

This shows that Theorem II represents another formulation of the known
AAEM Method [1].

Quantities v, and v ,represent the discrete valuzs of interval (0,1) (see Appen-
dix, item 2), so that index /4 can be omitted in some considerations. From (1.8)
it is shown that for Y’ = 0, R} = R} = R*, wherefrom it follows: F| = F, = Ik,
Under this condition Theorem II becomes the special case of Theorem I which
means that the 4 AEM Method represents the special case of the Generalized AAEM
Method.

2.2 The Corrected Aging Coefficient

The relationship between inverse operators Ry and Fj is shown in form (1.11)
and after integration, in form (1.14) i.e.

2.7) BK—B(1*+v o)=1%, 0=y <L.

Analogously with:

(2.8) RF*=R(I*+ 97— I*

and with relation (2.6) coefficients:

(2.9} Wy E= i , 0<y' <15 = -——1—,— ——1—, h=1,2
1—B* o 1—Br  Yn'or

are defined.

The comparison between (2.7) and (2.8) displays that K* = F* aad B* = R*
for v = 1. Comparing (2.6) with (2.9) we infer that azing co:ficient  is the spe-
cial case of coefiicient y, for v = 1. '

To the homogeneous section correspoads azing cozficient . To the unho-
mogeneous section, associated, in a general cas2, with two intezral ejuations (1.6),
correspod two coefficients yy, (2 = 1,2). For th: accepted creep function and
determined r and 1y, coefiicients ¢, depend on the ssctioa geomztrical properties
because they contain the compatibility conditions of th: uahomozeazras section.
They will be called corrected aging coefricients.

In order to get an insight into the influence of section geometrical properties
on these coefficients, Figure | contains comparative values y, for v' = 0.1, 0.3,
0.5 and 1.0 corresponding to the creep function CEB 1978 Model [2]. For the same
¢ and 1y a lower value of ., corresponds to the lower value of y'. For y" = I, its
highest value is obtained, which is, in fact, aging coefficient .
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Fig. 1. Coefficients yy (Y', t — 1o, to) for to = 3 days @71 = 3 and /g = 40 cm.

3. Discussion of the algebraic stress expressions

The following theorem [3] is valid for stresses in unhomogeneous sections:
it the nornwl force and the fiending moment change according to the law:

(3.1) N=cfiR*+H21*, M=_MiR*+ /s 1=,

15 . . ., M2 being arbitrary time-independent quantities then, in the general case
of the section geometrical properties, stresses depend linearly on the basic functions:

h=1

2
{32 GKH — VK [U};H 1*+ ¥, Wi B; s R=c,pyn,m; H= 0F 2.8,

In the above quoted paper this theorem was given in a more general form,
with the relaxation properties of prestressing steel being involved as well. Equations
(3.2) represent accurate expressions for stresses in statically determinate and inde-
terminate structures, due to the influences of self-weight (H = G), prestressing
by forces (H = P) and shrinkage (H = S), provided the conditions, established
in [3], take place.

This theorem is a direct consequence of the generalized AAEM Method.
The law of change of N and M (3.1) is obtained from (2.1) substituting function
R* for Ry* according to (1.8).

The calculation of exact values of stresses at every point of the section and
for every z and 7o is the simplest from expressions (3.2). By means of the known
numerical method [1] it is necessary to determine, once for ever, the values of func-
tion B* for a series of discrete values 79, ¢ — tp and y' as solutions of unhomoge-
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neous integral equations (2.7). Another method consists of the determination of
an approximate function B*, utilizing a procedure analogous to the procedure which
was used for obtaining the approximate function R* [4].

Independently of this, we shall consider the algebraic expressions for stresses,
obtained from (3.2), when basic functions By * are replaced by corrected aging coe-
fficients %y (2.9), respectively.

Two special cases of section geometrical properties appearing often in practice
are given: sections where Iy = Ip = 0 and ym = yp = Ya can be adopted (Fig.
2a) and sections where Ip = I = 0 and yp = yc = y» can be adopted (Fig. 2b) [5].

Except for stresses ocy (H = G, S) for sections in Figure 2b, all stresses in
these special cases depend either on the creep function and one basic function or
on the latter only. In those cases, the algebraic expressions contain only one co-
rrected aging coefficient y.

R b ——

Fig. 2. Sections with special geometrical properties.

It must be emphasized that the same algebraic expressions can be derived
by the procedure presented in Sub-chapter 1.2, the difference being that the free
parameter yr appears now. If N and M change according to law (3.1), these expre-
sions vield accurate values for stresses at every point of the section and for every
¢ and to, provided the corrected aging coefficient yr = ¥ obtained from (2.9) is
adopted. If another value for yr is accepted, the same expressions yield the appro-
ximate stress values. The aging cocfficient once adopted, yr = y (the A4EM Met-
hod) [6], the approximate values predict a smaller change in stresses in the interval
(to, £) than the accurate one. This is due to the fact that 3>y for every value of
¥’y 0=>v'>1. Thereby the effects of the concrete creep on the stress redistribution
are underestimated. If y» = 1 is adopted (the EM Method), these influuences are
even further underestimated.

When stresses depend on two basic functions, two corrected aging coeffi-
cients yyn (h = 1, 2) appear in algebraic expressions obtained from (3.2). If N and
M follow law (3.1) these expressions provide the accurate values of stresses at every
point of the section and for every ¢ and 2o, when values . are accepted according
to (2.9). Such algebraic expressions cannot be derived by means of the procedure
presented in Sub-chapter 1.2.

For practical applicability the significance of the algebraic stress expressions
derived by procedure presented in Sub-chapter 1.2 is beyond any doubt; they are,
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in this case, approximate expressions. When using them, it is necessary to determine
the value yr for every section so that the stress changes in the interval from 7 to ¢
at most points of the section are equal to, or gr ater than, those yielded by the accu-
rate-expressions. According to certain authors’ exprriences this is achieved when:
— the greater value of the corrected aging ceofficient for the free parameter, 7, —
= J/y2 Is accepted, for sections without steel member (Fig. 2a);
— the lower value of the corrected aging coefiicient for the free parameter 75 —
= Jx1 is accepted, for sections with a steel member (Fig. 2b).
It is understood that by accepting 75 = y (the AAEM Method), the effects
of concrete creep are underestimated, because for every section the aging coefficient
is greater than the greater value of the corrected aging coefficient.

4. Conclusion

The Generalized 44EM Method is relevant to the unhomogeneous section
with arbitrary geometrical properties. It stems from that that to every unhomoge-
neous section correspond two corrected aging coefficients 7., (b = 1, 2), depending
on the geometrical properties of that section. As its special case the known AAEM
Method is obtained so that the aging coeflicient y is a special case of the corrected
aging coefficient ¥,

On the basis of the conscquences of the Generalized AAEM Method, the
discussion of algebraic expressions for stresses is presented.

If these expressions are derived with the algebraic relation for concrete accor-
ding to the A4EM Method, where the aging coeflicient y is introduced [6], the
approximate values of stresses are obtained, predicting smaller stress changes in
the interval from ¢ to ¢z, than the correct one, which means that the concrete creep
effects are underestimated.

- If instead of a predctermined value of aging coefficient y free paramecter ALF
is introduced in the same algebraic expressions, then, by a suitable selection of its
value for every section separately, the following are obtained:

— the exact values of stresses, in the above mentioned special cases which are often
cencountered, when the corrected aging coefficient value for 1 F is accepted accor-
ding to expression (2.9);

— the approximate values of stresses in other cases; these values, in a large number
of points of the section, predict the same or greater stress changes in the inter-
val from ¢y to ¢, than the exact one, if s 1s accepted for every section, dependent
on its geometrical properties and according to a certain established criterion.

Appendix

I. The integral form of the stress-strain relation:

{_L Ge (2, ty) + L (tf *) Ge (75 8) d‘-‘]:
e (1) ot

1
= ([J t()) T

9
<0}
to
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is presented by means of the linear integral operator:
ccih I = E
F: — l +f, e=2¢e (I) — _EC"(_I_)_) E(-o — Ec (EO),
e

n the form:
1 o~
e=—— Fo.
co

1is the unity operator associated to the Dirac function.

Operators F and:

Rsig
are inverse and the following is valid for them:
RF=1, RF=FR
. i J )
The integral of function g = g (¢, 7) :M is defined:
T

T
B d
g =g"(t,t0)=¢ 1*=f5~ g (¢,7) H(v—1tp) dr,
T
1]

1* = H (1t — 10) is the Heaviside function.

< E
F*;_FI*ZL 1*“1"f*=1*+(?r: o = co
e Ecos

®.

F* is the dimensionless creep function and R* the dimensionless concrete
relaxation function.

The laws of algebra for ordinary numbers, including the commutativity law,
are valid for the linear integral operators used in the present paper.

2. The unhomogeneous section is presented in Figure 3.

Its position at the bar axis is determined by coordinate x - 4. = Ac (x) is
the area of the concrete part of the section, S; = S¢ (x) and J. = J. (x) are the static
moment and the moment of inertia of this area about the z-axis, respectively. E,
is the relative modulus of elasticity.

Eeo
E,’

Ej
Ve = Y= —: k=p, n, m; Ac,—=VcAc_, Scrzchc, .Ic,-:Vch.
E,
Iy = I (x) is the moment of inertia of the section part k2 (k¢ = ¢, p, n, m) about
the axis through the centroid Cp, parallel to the z-axis. A; = A4 (x) and J; = J; (x)
are the transformed section area and the moment of inertia of this area about the

z-axis, respectively; S; = Si(x) = vV A Iy
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f

Fig. 3. The unhomogeneous section.

The following dimensionless values will be used:

Y11 = cler ‘{12:Y21=§£{ Y22={f
A S Ji

The principal values of matrix ||yx|| are y1 and ye. The following notation
will be also used:

Syi=y1—y1, dv2=yu—ve, Ay=71—7v2, Ya'=1—vn, A=12.
The following holds:
0<ya<mi<l, O0<yi'<ye'<l.
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LES EXPRESSIONS ALGEBRIQUES POUR LES CONTRAINTES
DANS LES STRUCTURES MIXTES ET PRECONTRAINTES

Résumé

La méthode AAEM généralisée a été dérivée pour les structures mixtes et
précontraintes et on a demontré que deux coefficients de vieillissement corrigés,
dépendant des caractéristiques géométriques de la section, correspondent a la
section unhomogene dans un cas général. Sur cette base on a conclu que les expres-
sions algébriques pour les contraintes, déterminées par la méthode AAEM, souses-
timent les effets du fluage du béton dans la structure.

ALGEBARSKI IZRAZI ZA NAPONE U SPREGNUTIM I PRETHODNO
NAPREGNUTIM KONSTRUKCIJAMA

Izvod

Izvedena je Generalisana A AEM metoda za spregnute i prethodno napregnute
konstrukcije i pokazano je da, u opstem slucaju geometrijskih karakteristika, neho-
mogenom preseku odgovaraju dva korigovana koeficijenta starenja. Na osnovu
ovoga zakljuCeno je da algebarski izrazi za napone, odredeni A4AEM metodom,
podcenjuju efekte puzanja betona u ovim konstrukcijama.
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