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MICROMORPHIC THEORY OF MIXTURES APPLIED TO
THE THEORY OF RODS

Predrag Cvetkovi¢
1. Introduction

Studying heterogenous materials, the so-called mixtures, one comes across
much bigger difficulties than in the study of single component materials.
Due to the complexity of problems, arising from the study of mixture be-
haviour, different theories have appeared. All of them, to a lesser or a
greater degree, use different simplifications, together with analogies of single
component material mechanics continuum, in order to reach appropriate conclu-
sions which are valid for the mixture as a whole. Because of that majority
of approaches for the study of mixtures the following three physical princip-
les, postulated by C. Truesdell [8], should be used:

a) All the properties of a mixture must be mathematical consequences
of the properties of a constituent;

b) In order to describe the motion of a constituent, we may in imagi-
nation isolate it from the rest of the mixture, on condition that we allow
properly for the actions ot the other constituents upon it

c) The motion of the mixture is governed by the same equations as the
motion of a single body.

In further development of the theory of mixtures, papers which do not
treat them as a classical continuum model, but as a micromorph.c continuum
[4], [5], have appeared. For such purpose C. Eringen [1] inferred the balance
laws, using the general balance laws, and this was the main reason why in
this paper we decided for such an approach.

In the current theory of mixtures there is only one paper [9] which
refers to the study of onedimensional continuum. The paper appeared in 1975
and in it the general non-linear theory of mixtures of oriented curves was
recommended. The authors mentioned the mathematical model for human
spine as a possibility for the practical application of the studies.

One can see from it that there are practical examples in nature to
which one can apply the mixture theory of onedimensional continuum. Owing
to it, we believe that in order to develop a theory of mixtures one should
apply the micromorphic theory of mixtures and the corresponding balance
laws and discontinuity conditions, applicable to threedimensional body [10],
to rods as onedimensional bodies as well.

In paper [2] the micromorph'c theory of three dimensional continuum
was applied [1] and the general balance laws were derived, which were then
applied to the theory of rods.
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Using the results from paper [2], we deduced specific laws concerning
the balance of the mass, momentum and energy of a-th constituent of the
mixture and the sole mixture in the case of a rod.

2. Kinematics

We define the rod as onedimensional micromorphic continuum, which
contains «— 1, 2, ..., n constituents of the mixture. To describe the mo-
vement of cne constituent we shall apply, as in three dimensional case [10],

the principle cited in the intro-
duction under b) and in that way
- we shall assume the movement,
A micromovement and deformation
only of the «-th constituent of

the rod mixture (fig. 1).
" In the non deformed confi-
e j;, guration K,, which corresponds
‘ to the time 7,, the rod has a

(Fig. 1)
curve shape

K - Ke
As

0°*

(2.1) X% = X% (S,

where S, is the arc of the curve of the «-th constituent. Unit vector of the
curve tangent in the non deformed configuration is

= K

Considering that the microelements movement in the macroelement, re-
lative to their centre, can adequately approximate it as a homogenous defor-
mation, then the equations and deformations of the «-th constituent of the
mixture are determined by

k k ;
X=X (S (@ 1)
(2.3)
k _k s
Lo k= Lok @y 1),
where y_i‘;),{ are microdeformation gradients of the «-th constituent of the
mixture, which define the homogenous deformation.

Spacious curves arc of the «-th constituent of the mixture in the defor-
med configuration K, is defined by

0 xk o x!
(2.4) T =S @) (Seys 1) = f \/gu 0S50S dS(x) .
The tangent’s unit vector in the deformed configuration K, is
: d x* o x*
(2.5) 7 o MO AR, |

O ) Bof
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where for a partial derivative

(2.6) | '0"__‘"(')@'
‘)cjp(a) dc/
applies. The average velocity of the rod’s mixture ij” is defined as
2.7 Pny)"—"z P o () >
whilst the average density is defined as
(2.8) p=2 P

Diffusion velocity of the «-th constituent of the rod U, relative to the
average velocity %, is expressed by

5 Ugy=F 0~ oF-
It follows from (2.7) and (2.9) that
(2.10) 2,66 U= 0.

For a magnitude ¢ =¢ (%, ), defined in all the points of the rod, the
following two material derivatives will exist: material derivative of the cons-
tituent

.0y 0y
210 Sl A0 Wit 280 "
(2.11) Y YR o (@
and material ddrivative of the mixture
D d .
(2.12) § = Lp%-—q—’—oj/’
ot 0. F
It follows that the link between them
' N X
If the average value of the function for the mixture exists
(2.14) oY =2 o Ve »

then, using (2.9), (2.11) and (2.12), we obtain the so-called fundamental iden-
tity, which applies to the rod in the form

o ; - 0p 0 - 0
2e@b@=e¥+¢|—+— (A |+ — (& ) —
2. ) bw=p¢+ ¢ 3 d#,(P <) gooy’ P Y Uw)

(2.15)

dp(a) 0 (‘
- 2% ——+— a2 ) | s
gl‘(a)[ 31 0.5 (P(a) v ))
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3. General local balance laws of the micromorphic theory of rod

Applying the physical principle b) stated in the introduction and using
the general form of the local balance laws of the micromorphic theory of
rod [2], we can write the general form of the local balance laws and the
main discontinuity conditions, which apply to each single constituent, I.e.

0 T(a)
F &) — sy =]
0P (%) — F()
(3.1) |
[T(cr.) o 4’(:1) (rvyu(a) - u)] =0
where
. . . oc/)(a)
(3.2) 0 = Y + Vw7,
0.7

4. Particular balance laws of constituents and mixture

Using the general form of the local balance laws of the a«-th constituent
of the rod given in (3.1), we can derive the appropriate balance laws of sin-
gle physical values. If we summ the over all constituent of the mixture we
would get the balance laws for those physical values, which will apply to the
mixture as a whole.

a) Mass density. The mass density balance law is obtained when one
assumes that

(4.1) b= 0 (@ m =0, &'=pB"w

where these values are defined in relation to the microelement. p'(,, is the

mass density of the «-th constituent in microelement, and pB'm is the volume
change of the mass of the «-th constituent in microelement due to a chemi-
cal reaction wiht some other or all constituents of the mixture.

The corresponding tensor fields are defined by
Te=0
(4.2) Yoy =P = P

)= <°B(a)> = Pg(a)

where p(, is the mass denisity of the a-th constituent of the mixture and { )
is the mean value. Substituting (4.2) in (3.2), we get

~

0
(4.3) Ola) = P(a)‘l'P(a) 5{9?)

-

thus, from (3.1),, the mass balance low of the a-th constituent of the mixture is

. 0 0)9
(4.4) P T P~y e ~ o
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If (4.2), and (4.2), are substituted in (3.1), one gets the discontinuity
condition of the «-th constituent of the mixture

(4.5) : [0 (o5 @y — )] = 0.

When in (4.4) we summ the over all constituent of the mixture and
use (2.7), (2.8), (2.9) and (2.10), one gets the balance law of the mass den-
sity of the mixture

()P
4.6 — T 0

on condition that
(4.7) 2 eBy=0;

which means that within the mixture the mass remains constant.

One gets the discontinuity condition for the mixture from (4.5), us-
ing (2.7)

(4.8) [o (o ~w)]=0.
Fundamental identity (2.15), using (4.4) and (4.6) becomes

(4.9) Z o Yy =p ¢ + g Z&’? (P Yoy Uo) — % 0 B by -

b) Momentum. In this case are
4’(;) & pza) ‘j_za:)
T@= @
(4.10) .
T;a)=izg)";a)k=f£n'm):f;a)
g;a)= P;a) f;ot)

where vm, t(a) and f(a) are the velocity vector, stress vector and body force

of the w-th constituent respectwely, defined in a microelement. The corres-
ponding values, figuring in (3.1), are of the form

"I’(a} Pl V(a) P(a) I(a) Vi) k
(4.11) T(e) = ()
8@ = @

where f) and f, are the stress vector and body force of the w«-th consti-
tuent of the mixture.

Substituting (4.11) in (3.2) and considering (4.4) one gets

' & 3k : p 1 ~
(4.12) 5 (1) = ¢ (B Y + B Yo ) + P Vi + P i) (Ve 1 Vi & + Vi) -

2 Mehanika 4
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When (4.11), , and (4.12) is substituted in (3.1), one gets

010 - B ol gt e
0 T P@ (= Y) ~ P i (o1 Voo k Y k) =

(4.13)
A ~k
= 0 (B Yoy + B Yy 0)-
When we take into account that
(4.14) ity =0,

which physically means that the mass centre of microelement is in the same
point in the microelement, then it follows that

(4.15) =, B0

Then from (4.13) one gets the balance of the momentum of the «-th consti-
tuent in the form of

(4.16) 0L

0.

+ 0@ (e = Ye) = 2 B Y -

Discontinuity condition of the «-th constituent of the mixture will be
obtained if one uses (3.1),, (4.11),, with (4.14),

(4' 17) [F{(al — Pa) E(cx) (oﬁa(a) - u)] =0.

If we summ the over all constituents of the mixture (4.16), and use the
fundamental identity (4.9), giving that (=74 and ¢=v and the following

definitions

(4.18) 2 efw=2f,

(4.19) =2 [ 10— Py e U],

we shall get the balance of the momentum for the mixture
ot .

(4.20) e e(f-W=0.
0.9 e (f—V)

If we summ the over all constituents of the mixture (4.17) and use
(4.19), we shall get the discontinuity condition of the mixture,

4.21) [t=pv (S ~w]=0.

¢) Energy. The appropriate values in this case are
’ ’ r 1
¢(a)=P(a)(€(a)+?}_’(a) V()

’ I ! r
T@= L@ V@ T @
(4'22) e e ! 'k
T@=le V0T 9@

’ r r ’ ! r
gw=P@f@Y@+P@h@
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where <, tEa), t;‘:)_. g, and hu represent internal energy density, stress

vectors, heat flux vector and body heat supply of the o-th constituent respec-
tively, defined in a microelement. The appropriate values from (3.1) and (3.2)
have the form

1 1 s
Y@ = P (E(a) + D) Vi) Yy + P) Y r Vst (a))

r
(4.23) T =T Y T Lo Vo r + G

r
8 = @@ Ve + P S Y@ r T P M

where €y, f), ?(x)> @) and k) represent internal energy density, stress vec-

tors, heat flux vector and body heat supply per unit volume of the a-th con-
stituent respectively.

Substituting (4.23) in (3.2) and considering (4.4) we get

v ’ r n . k
6= Pe e + V) V@ + Vs i@ (3(oc) r V() k V(@) Dl +
(4.24)

A 1 1 nrs
+eBw@ (E(a) 5 Y }i(a)) T e Y Vs B

If (4.23), and (4.24) is substituted in (3.1), one will obtain the energy
balance law of the «-th constituent in the form of

V) , Vayr , 0 q(s)
P(a) & ~ L) —"a"ojp — ) —a"c?o - ({ @ — Nt (a)))' @r =5 P~ P hwy=
(4.25)

A 1 1 ars
= Bw (? V(a) Vi) — E(oc)) + Py pBw@ MOTRLCITR

Substituting (4.23),, in (3.1), one will get the discontinuity condition
of the a-th constituent in the form of

1
Ty Vi) T 1 @ Ve r T 4@ — P (S(a) £3 5 Vi Y +

(4.26)

1 LTS y
® 2 Vi r V(s l(a)) (o— ")]= 0.

If equation (4.25) summs the over all constituents and if fundamental
identity (4.9) is used, after a longer calculation and rearranging, one will get
the energy balance law for the mixture,

; ov ov, - 0q
(4.27) —pettsG+ 1T =S+ (T-N1) v+ +ph=0,

c 0.7 J. 0.7
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where the following definitions are used

| I rs
pe=2, P(a)(e(o:) 1 5 Uia) Uia) ) O(d)ro(fl).v"(’l))
- Swr?

{’\' = Z [:F?q) ~ Pl Y U(“)]
[+ 4

) kr .rs
thr =2 116 — o s U ]
o
(4.28)
, ks
= Z [f(m) ~ P Y() U, — P(a)_e(ot)x ﬁ:“)k l(;’

- o
k Z[ k r krO 1 1 a ) .rSs
=219 T @+ L@ Y%wr— P S(a.)+—2""(a) Uw) ‘*‘? @+ 905 1@ ) Ut
= ~(o) 7 i

o h=2, 0t Uit + 10 ey +r O r)-
x

If one summs the over all constituents of the mixture (4.26) and uses
the definitions (4.28) one will get the discontinuity condition of the mixture

1 I .
(4.29) [t 1’+f’\g+qﬁp(€+-2— vy +23,vsi”)(&”—u)]—-0.
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MUKPOMOP®HAA TEOPUA MATEPUAJIA CMECHU
' NMPUMEHHEHASA K TEOPHMM CTEPXXHEWU

I1. l{gemkoeuu

PeszwomMme

[Mosnb3ysch obuei (hopMoii JIOKAJbHBIX 3aKOHOB OajaHca MHKpoMopdHOH
TeopuHM CTEPKHEBBIX CHCTEM, HamNMCaHHA obwas ¢opMa JIOKAJBbHBIX 3aKOHOB
GamaHca W YCJOBHH TepepbiBa Ui KOMIOHCHTBI Martepusina cMmecH. TTpumenss
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obuyio Gopmy GanaHCHOrO ypaBHEHHS K YACTHOCTSAM, BbIBEJCHHBI 3aKOHbI Oa-
JIAHCA MAcChl, KOJIMYECTBA JBHXEHHS M EHEPrHH, BMECTE C COOTBETCTBYIOLUMMH
YCJIOBSMH TI€pephIBa Uil KOMIIOHEHTHI H JJISl CMECH B LEJIOM.

MUKPOMOP®HA TEOPUJA MEIABUHE IMPUMEBEHA
HA TEOPUJY HMTAITIOBA

ITpegpai lseiuikosuh
Pesuwme

Kopuctehn onmmtn ob6iMk JoKamHMX 3aKoHa Oananca MukpoMopdHe Teo-
pHje IUTamoBa HAamMCaH je omuTH OOJMK JOKAaTHMX 3akoHa OajaHca M YC/IOBa
JUCKOHTHHYMTETA IITala 3a CBAKM CacTojak MelmaBuHe mojeanHaqHo. IIpume-
wyjyhu Te 3akoHe OanaHca M3BeJcHH Cy 3aKOHM OajaHca mace, KOJIHYHHE Kpe-
Tama M CHEpruje Kao M oJrosapajyhux ycjoBa OUCKOHTHHYMTETa 3a CIy4aj
JeIHOr cacTojka MEIIABUHC W MCIIABUHE Yy ILEJIHHU.

Ilpenpar LlserkoBuh
Caobpahajuu dakynrer

Beorpan
TakosBcka 34

Osaj pag je Oeo McTpaXwuBavykor mnpojekta MHcTTyTa 3a MeXaHuk IIM® y oxsupy
nporpama 3ajeguune Hayka CP CpOuje



