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ABSTRACT. A class A of continua is said to be C-determined provided that
if X,Y € A and C(X) ~ C(Y), then X ~ Y. A continuum X has unique
hyperspace provided that if Y is a continuum and C(X) ~ C(Y), then X & Y.
In the realm of metric continua the following classes of continua are known to
have unique hyperspace: hereditarily indecomposable continua, smooth fans
(in the class of fans) and indecomposable continua whose proper and non-
degenerate subcontinua are arcs.

We prove that these classes have unique hyperspace in the realm of rim-
metrizable non-metric continua.

1. Introduction

All spaces in this paper are compact Hausdorff spaces and all mappings are
continuous mappings. If two spaces, X and Y, are homeomorphic, we write X = Y.
The weight of a space X is denoted by w(X). The cardinality of a set A is denoted
by card(A). We shall use the notion of inverse system as in [6, pp. 135-142]. An
inverse system by X = {X,, pa», A} is denoted. For other details see Appendix.

Let X be a compact space. We denote by 2% the set of all nonempty closed
subsets of X, by C(X) the set of all nonempty closed connected subsets of X and
by X (n), where n is a positive integer, the set of all nonempty subsets consisting
of at most n points [11]. We consider C'(X) and X (n) as a subset of 2%. The
topology on 2% is the Vietoris topology and C(X), X (n) are subspaces of 2X.

Let X and Y be compact spaces and let f : X — Y be a continuous map.
Define 27 : 2X — 2Y by 2/(F) = f(F) for F € 2X. By [15, 5.10] 2/ is continuous
and 2/(C(X)) c C(Y) and 2/(X (n)) C Y(n). The restriction 2/|C(X) is denoted
by C(f).

Let X = {X,,Pap, A} be an inverse system of compact spaces with the nat-
ural projections p, : lim X — X,, a € A. Then 2X = {2%« 2pav A} (C(X) =
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{C(X4a),C(pap), A} and X(n) = {X,(n),2P*|Xp(n), A} form inverse systems. For
each F' € 2'"™mX 'je  for each closed F' C lim X the set p,(F) C X, is closed and
compact. Thus, we have a mapping 2P+ : 2imX _ 9Xa induced by p, for each
a € A. Define a mapping M : 2imX — 1im 2X by M(F) = {p,(F) : a € A} since
{pa(F) : a € A} is a thread of the system 2X. The mapping M is continuous
and 1-1. It is also an onto mapping since for each thread {F, : a € A} of the
system 2X the set F' = {p;'(F,) : a € A} is nonempty and p,(F') = F,. Thus,
Mis a homeomorphism. If P, : lim2X — 2%« ¢ € A, are the projections, then
P, M = 2P=_. Identifying F' by M (F) we have P, = 2P=.

LEMMA 1.1. [11, Lemma 2.]. Let X = limX. Then 2% = lim2¥, C(X) =
lim C'(bX) and X (n) = lim X(n).

If F, € 2%, then P71(F,) = (2P=)~1(F,) = {F : F is closed subset of lim X
and p,(F) = F,} € 2'mX_ Similarly, for the natural projection @, of the system
C(X) = {C(Xa),C(pab), A} we have Q, = C(p,). Moreover, if C, € C(X,), then
Q,(C.) = (C(pa))1(C,) = {C : C is subcontinuum of lim X and p,(C) = C,} €
C(lim X).

A continuum X has unique hyperspace provided that if YV is a continuum and
C(X)=C(Y), then X » Y.

In the realm of metric continua the following classes of continua are known to
have unique hyperspace: finite graphs different from an arc and a circle, hereditarily
indecomposable continua, smooth fans and indecomposable continua whose proper
and non-degenerate subcontinua are arcs.

A space X is said to be rim-metrizable if it has a basis B such that Bd(U)) is
metrizable for each U € B. Equivalently, a space X is rim-metrizable if and only
if for each pair F,G of disjoint closed subsets of X there exists a metrizable closed
subset of X which separates F' and G.

Rim-metrizable spaces are generalization of metrizable spaces. Let us observe
that every continuous image of ordered compact space is rim-metrizable. The
properties of rim-metrizable spaces which are essential for the our purpose are
established in Lemmas 3.4 and 3.5.

The main purpose of this paper is to prove that the above mentioned classes
have unique hyperspace in the realm of rim-metrizable continua. This will be proved
in Section Two. The main tool for the proofs of theorems in Section Two is the
inverse systems and limits which are studied in Appendix.

2. Continua with unique hyperspace

A class A of continua is said to be C-determined [16, Definition (0.61), p. 33]
provided that if X,Y € A and C(X) ~ C(Y), then X ~ Y. A continuum X has
unique hyperspace [1] provided that if Y is a continuum and C(X) =~ C(Y), then
X=rY.

Let G be a class of continua and let X € G. Consider the class Gx of continua
Y such that

(i) no two distinct members of Gx are homeomorphic,
(ii) C(Y) = C(X) for each member Y of Gx,
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(iii) if Z € G and C(Z) = C(X), then Z =~ Y for some YV € Gx.

We say that X has unique hyperspace in G provided that Gx = {X} [2].

If G is the class of all continua, then X has unique hyperspace in G if X has
unique hyperspace. Let A be a class of continua. The class A are C-determined if
and only if each element of A has unique hyperspace in A.

A continuum X is said to be hereditarily indecomposable provided that each
of its subcontinuum is indecomposable [16, p. 17, (0.31)]. A continuum X is
hereditarily indecomposable if and only if whenever A and B are subcontinua of X
such that AN B # (), then A C B or B C A.

THEOREM 2.1. [16, Theorem (0.60), p. 33]. If X and Y are hereditarily in-
decomposable metric continua such that C(X) ~ C(Y), then X =~ Y. In fact, if
h:C(X)™C(Y) is a homeomorphism, then h(X (1)) = Y (1).

THEOREM 2.2. [16, Theorem (1.61), p. 111]. A metric continuum X is hered-
itarily indecomposable if and only if C(X) uniquely arcwise connected (i.e., given
A,B € C(X) with A # B there exists one and only a € C(X) such that « is an
arc with endpoints A and B).

As an immediate consequence of Theorems 2.1 and 2.2 we have the following
result.

THEOREM 2.3. Hereditarily indecomposable metric continua have unique hy-
perspace.

It is naturally to ask the following question.

QUESTION 1. Is Theorem 2.3 true if for non-metric hereditarily indecomposable
continua?

The following theorem answers affirmatively if X is non-metric rim-metrizable
hereditarily indecomposable continuum.

THEOREM 2.4. Hereditarily indecomposable rim-metrizable continua have unique
hyperspace, i.e., if X is hereditarily indecomposable non-metric rim-metrizable con-
tinuum and Y is continuum such that C(X) ~ C(Y), then X = Y. In fact, if
h:C(X)™C(Y) is a homeomorphism, then h(X (1)) = Y (1).

PROOF. If X is a compact space, then w(2%) = w(X) [6, p. 306, 3.12.26(a)].
This means that w(C(X)) = w(X). From C(X) = C(Y) it follows that w(X) =
w(Y). By virtue of Theorems 3.4 and 3.7 there exist inverse o-systems X =
{Xo0,Pap, A} and Y = {Y,,qa, A} (over the same set A since w(X) = w(Y))
such that the bonding mappings p,;, are monotone surjections, lim X = X and
limY =Y. From Theorem 3.6 it follows that there exists a subset B, cofinal in
A, such that gp. are monotone for every b,c € B. By Lemma 3.2 we may assume
that B = A. Tt is clear that the spaces X, and Y, are hereditarily indecomposable
since pgp and ¢qp are monotone surjections. By Lemma 1.1 C(X) is homeomorphic
to the limit of C'(X) = {C(X,),C(pas), A} and C(Y") is homeomorphic to the limit
of C(Y) = {C(Ya),C(qap), A}. If C(X) ~ C(Y), then from Theorem 3.5 it follows
that there exists an a € A such that for every b > a there exists a homeomorphism
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hy : Xp = Y, such that every diagram

o) 2L ocx)

(2.1) lhb lhc

o) 2L o)
commutes if @ < b < e. From A(X (1)) =Y (1) of Theorem 2.1 it follows that every
diagram

Xy 2 X,
(2.2) hb|Xb(1)l lhc\xc(l)

Y, «2e y,

commutes. We infer that there exists a homeomorphism A : X — Y induced by
the collection {hy|Xp(1) : b > a} and h(X (1)) =Y (1). O

For indecomposable continua we have the following theorems.

THEOREM 2.5. [13, Theorem 3.] Let X and Y be indecomposable metric con-
tinua such that all of their nondegenerate proper subcontinua are arcs. If C(X) is
homeomorphic to C(Y), then X is homeomorphic to Y. Moreover, if h : C(X) —
C(Y) is a homeomorphism, then h(X (1)) =Y (1).

THEOREM 2.6. [3, Theorem 2.3] Indecomposable metric continua such that all
of their nondegenerate proper subcontinua are arcs have unique hyperspace.

Now we shall prove the following generalization of Theorem 2.6.

THEOREM 2.7. Indecomposable non-metric rim-metrizable continua such that
all of their nondegenerate proper subcontinua are arcs have unique hyperspace.

PrROOF. As in the proof of Theorem 2.4 we infer that w(X) = w(Y). By
virtue of Theorem 3.7 there exist o-complete inverse systems X = {X,,pas, A}
and Y = {Y,,qu», A} (over the same set A since w(X) = w(Y)) such that the
bonding mappings p,; are monotone surjections, lim X = X and limY =Y and
every X,(Y,) is a metric continuum. From Theorem 3.6 it follows that there exists
a subset B, cofinal in A, such that ¢,. are monotone for every b,c € B. By
Lemma 3.2 we may assume that B = A. It is clear that the spaces X, and Y,
are indecomposable since p,p and g, are monotone surjections. Let us prove that
each nondegenerate proper subcontinuum Z, of X, is a generalized arc. Let Z =
p;1(Z,). Then Z is continuum since p, is monotone. Moreover, Z is a generalized
arc with endpoints = and y since each nondegenerate proper subcontinuum of X is
a generalized arc. Now, Z,, as a continuous image of an arc is arcwise connected
[19]. This means that the exists a generalized arc L, with endpoints p,(z) and
pa(y). If we suppose that Z, is not an arc, then there exists a point x, € Z, \ L.
Moreover, p;(z,) C Z and p;'(z,) Np;1(Ly) = 0. On the other hand, p;(L,)
is a continuum containing x and y. Hence, p;'(L,) is an arc. We infer that
p, (L,) = Z. Finally, we have p,!(z,) C Z and p,'(z,) N Z = 0, a contradiction.
Thus, each nondegenerate subcontinuum of X, is an arc. Further, by Lemma 1.1
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C(X) is homeomorphic to the limit of C(X) = {C(X,),C(Pas), A} and C(Y) is
homeomorphic to the limit of C(Y) = {C(Ya),C(qap), A}. If C(X) = C(Y), then
from Theorem 3.5 it follows that there exists ana € A such that for every b > a
there exists a homeomorphism hy : X — Y3 such that every diagram

c(x,) 2L o(x,)

(2.3) lhb lhc

cwy) £l o)

commutes if @ < b < e. From A(X (1)) =Y (1) of Theorem 2.6 it follows that every
diagram

Xb Pbe Xc
(2.4) mix | [ el

YIJ<LYC

commutes. We infer that there exists a homeomorphism A : X — Y induced by
the collection {hy|Xp(1) : b > a}. O

QUESTION 2. Is Theorem 2.7 true for non-metric indecomposable continua such
that all of their nondegenerate proper subcontinua are arcs?

A dendroid is a hereditarily unicoherent continuum which is arcwise connected.
If X is a dendroid and z,y € X, then there exists a unique arc [z,y] in X with
endpoints z and y.

A point e of a dendroid X is said to be endpoint of X if there no exists an arc
[a,b] in X such that € [a,b] \ {a,b}. The set of all endpoints of a dendroid X is
denoted by E(X).

The dendroids in which every arc is a metric arc play an interesting role as
shows the following theorem.

THEOREM 2.8. Let X be a dendroid. There exists an inverse system X =
{X4,Pab, A} such that each X, is a dendroid with metrizable arcs, every pap is
monotone and X is homeomorphic to lim X.

ProOF. By Theorem 3.4 there exists an inverse system Y = {Y,, qup, A} of
metric continua Y, such that X is homeomorphic to limY. Let ¢, be the natural
projection of X onto Y,. Applying the monotone-light factorization [6, p. 451,
Theorem 6.2.22] to g,, we get the compact spaces X,, monotone surjection m, :
X — X, and the light surjection [, : X, — Y, such that g, = l,m,. Asin b) of the
proof of Theorem 3.7 there exists a monotone surjections pp : Xp — X, such that
DabMp = Mg, a < b. It follows that X = {X,, p.p, A} is an inverse system such that
X is homeomorphic to lim X. Let us prove that X, is a dendron. The space X, is
hereditarily unicoherent since m, is monotone. Moreover, X, is arcwise connected.
Namely, if z,,y, are distinct points of X, then there exists a pair x,y of points of
X such that z, = m,(z) and y, = m,(y). Let L be the arc with endpoints z and y.
Now, m, (L) is a continuous image of an arc and, consequently, arcwise connected
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[19]. Hence, X, is a dendroid. By Lemma 3.4 we infer that each arc L, in X, is
metrizable since every map l,|L, is light. O

If X is rim-metrizable, then every X, is rim-metrizable (Lemma 3.5) and
metrizable since every map [, is light. Hence, we have the following theorem.

THEOREM 2.9. Let X be a rim-metrizable dendroid. There exists an inverse
system X = {Xg,pab, A} such that each X, is a metric dendroid, every py is
monotone and X is homeomorphic to lim X.

THEOREM 2.10. Let X = {X,,pap, A} be an inverse system of dendroids and
monotone surjective bonding mappings pap. The X =lim X is a dendroid.

PROOF. It is well known that X is hereditarily unicoherent [17, Theorem 3].
Let us prove that X is arcwise connected. Let x,y be a pair of distinct points in
X. There exists an a € A such that py(x) # ps(y) for every b > a. There exist
a unique arc L; which contains p,(z) and p,(y). Let us prove that py.(L.) = Lp.
Now, ppe(Lp) is a non-metric image of an arc and, consequently, arcwise connected
[19]. Tt follows that there exists an arc My with endpoints py(z) and py(y). We infer
that M, = Ly since X, is hereditarily unicoherent. Moreover, p,."(M;) = p,.!(Ls)
is a continuum containing L. since X, is hereditarily unicoherent. This means that
pve(Le) C Ly. Finally, py.(L.) = Ly since Ly is the arc and py.(L.) contains p,(x)
and py(y). We have an inverse system {Lp, ppc|L.,b > a} of the generalized arcs.
The bonding mappings py.|L. are monotone since X, is hereditarily unicoherent.
It is known that L = lim{Ly, ppc|L.,b > a} is a generalized arc which contains the
points z and y. Hence, X is a dendroid. a

If a dendroid X has only one ramification ¢, it is called a fan with the top ¢.
A fan X with the top ¢ is denoted by (X,t). A fan X with the top ¢ is said smooth
provided that a net {ay, : n € E} of points a, of X tends to a limit point a, then
the net of arcs {[ta,] : n € E} is convergent and Lim{[ta,] : n € E} = [ta] [5, p.
208].

LEMMA 2.1. Let X be a fan with the top tx and let f : X — Y be a monotone
surjection. Then 'Y is a fan with the top ty = f(tx).

PROOF. It is clear that Y is hereditarily unicoherent. Moreover, Y is arcwise
connected. Let y1,ys be a pair of points of Y. There exists a pair z,zs of points
of X such that f(z;) = y1 and f(z2) = y2. There exists an arc L in X with
endpoints z1,z2. Now, f(L) is arcwise connected [19]. Hence, Y is a dendroid.
Let C' be the union of three arcs Ly, L and Lz such t, = L1 N Ly N Lz. Then
f~Y(C) is a continuum in X which is not a subcontinuum of an arc. We infer
that tx € f~(C). This is true for every choice of arcs Li, Ly and Lz. Thus,
tx € f1(ty) and f(tx) = ty. a

THEOREM 2.11. Let X be a rim-metrizable fan. There exists an inverse system
X ={X,,Pap, A} such that each X, is a metric fan, every pa, is monotone and X
1s homeomorphic to lim X.
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ProOOF. From Theorem 2.9 it follows that there exists an inverse system X =
{Xa,Pab, A} such that each X, is a metric dendroid, every p,; is monotone and X
is homeomorphic to lim X. Moreover, by Lemma 2.1 we infer that each X, is a
fan. a

LeEMMA 2.2. Let f: (X,tx) — (Y,ty) be a monotone surjection between fans.
If (X,tx) is smooth, then (Y,ty) is smooth.

PrOOF. If X and Y are metric fans, then see [5, Theorem 9, Corollary 10.]
or [4, Theorem 12]. For the sake of the completeness we give the proof which is a
straightforward modification of this proof for non-metric case. From Lemma 2.1 it
follows that Y is a fan and that ty = f(¢tx). Suppose that Y is not smooth. Then
there exists a net {y, : n € E} in Y which converges to yo and such that there
exists a point ¢ € (Ls[tyyn]) \ [tyyo]. Thus, there exists a subnet of arcs [ty yn,, ]
and there are points ¢, such that

(2.5) Cm € [tyYn,,] and ¢ = lim ¢,,.
Now, f~1([tyyo]) is connected since f is monotone, and

(2.6) F=He N ([tywo)) = 0.

Consider a net {z,,, } of points of X such that f(x,,,) = yn,,. This net contains
a convergent subnet {z,,, } [10, p. 136, Theorem 2]. Put zo = lim{z,,, }. It is
clear that f(zo) = yo. This means that [txzo| = Lim[tx @y, ], (since X is smooth)
and f([tzzo0]) = f(Lim[tx@n,, |) = f(Ls[tx@n,, ]). Further, we have

(2.7) f(Lsltxn,, ]) = Lsf([txwn,, ])

(2.8) f(ltxen,, 1) 2 [ty yn,., |-

We conclude that f([tx@o]) D Ls[tyyn,,, |- It follows from (2.5) that ¢ € Ls[tyyn,,, |-
This means that (2.8) implies ¢ € f([txxo]), i-e., f~1(c)N[txwo] # 0. On the other

hand, f~*([tyo]) is a continuum, and hence, a fan. Since tx € f~([tyyo]) and
zo € f Y ([tyyo]), we have [txzo] C f!([tyyo]). This means that

(2.9) F e N [ty yol) # 0.
On the other hand, from (2.6) f~1(c) N f~([tyyo]) = 0, a contradiction. ad

THEOREM 2.12. For every rim-metrizable smooth fan X there exists an inverse
system X = {X,, pab, A} such that every X, is a metrizable smooth fan, every pap
is a monotone surjection and lim X is homeomorphic to X .

ProoF. By Theorem 3.7 there exists an inverse system X = {X,, pas, A} such
that every X, is a metrizable continuum, every p,; is a monotone surjection and
lim X is homeomorphic to X. From Lemmas 2.1 and 2.2 it follows that every X,
is a smooth fan. O

Let X be a smooth fan with top t. From the definition of smoothness it follows
that the set N[C(X)] = {[tz] : « € X} is a homeomorphic copy of X in C(X) (the
homeomorphism Hy is the map ¢ — tz [7, p. 282]). In the sequel we shall use the
following lemma.
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LemMA 2.3. [7, Corollary 3.3] If X; and X. are smooth metric fans with
C(Xl) = C(XQ), then X; =2 X,.

REMARK 2.1. From the proof of Corollary 3.3 in [7] it follows that if h :
C(X1) = C(X2) is a homeomorphism, then h(N[C(X;)]) = N[C(X2)].

THEOREM 2.13. [2, Theorem 4.4] Smooth fans have a unique hyperspace in the
class of fans.

LEMMA 2.4. Let X and Y be the fans. If f : X — Y is a monotone surjection,
then C(f)(N[C(X)]) = N[C(Y)], i.e., the diagram

Y — X

(2.10) lHy lHX

commutes.

ProoF. By the definition N[C(X)] = {[txz] : ¢ € X}. Let [tz] € N[C(X)].
Then C(f)([tx]) = f([tz]). The restriction of f|[tz] is a monotone surjection.
This means that f([tz]) = (f|[tz)]([tz]) is an arc in YV with the endpoints ¢ty and
y = f(z). Hence, f([tz]) = C(f)([tz]) is in N[C(Y)]. Conversely, if [tyy] is fixed
in N[C(X)], then f~1(y) is a subcontinuum of X such that tx € f~!(y). Hence
f1(y)is a subset of some arc [txe]. If x € f~1(y), then f([txz]) D [tyy]. Thus
fY([tyy]) C [txz]. This is impossible since f!([tyy]) contains tx and z. O

Now we will prove that Theorem 2.3 is true for non-metric fans.

THEOREM 2.14. If X1 and X5 are smooth rim-metrizable non-metric fans with
C(Xl) ~ C(XQ), then X1 ~ XQ.

PRrOOF. By Theorems 3.7 and 2.1 there exist g-complete inverse systems X =
{Xa,Pab, A} and Y = {Y,, qup, A} (over the same set A since w(X) = w(Y')) such
that the bonding mappings p,, and ¢, are monotone surjections, lim X = X and
limY =Y, X, and Y, are metric fans since p,, and g,, are monotone surjections.
Now, C'(X) is homeomorphic to the limit of C(X) = {C(X,), C(pas), A} and C(Y)
is homeomorphic to the limit of C(Y) = {C(Y,),C(qw),A}. If C(X) ~ C(Y),
then from Theorem 3.5 it follows that there exists an a € A such that for every
b > a there exists a homeomorphism hy : X, — Y} such that every diagram

c(x,) 2L o(x,)
(2.11) [ [
O(ch)

C(Yy) —— C(Yo)
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commutes if @ < b < ¢. From h(N[C(X1)]) = N[C(X2)] of Remark 2.1 it follows
that every diagram

C(pbc

N[C(Xy)] «—— N[C(X,)]
(2.12) mINTCx)] | [ reivieo
NC() <2 N[o)]

commutes. From Lemma 2.4 it follows that if f : X — Y is a monotone surjection,
then diagram

f
(2.13) lHy lHX
Nie)] <2 Niex)]

commutes. Now we have the following diagram

DPbe Xc

o
C - NC

N[C(xy)]) ErelM N[C(X,)]

(2.14) B |NTC( xbnl lhbw (%))

bc)\N[C

NO(vy)] LeMETN - Nroy,)]

H;bl lH Ve
dbe

We infer that there exists a homeomorphism H : X — Y induced by the collection
{Hy'hyHx, : b > a} of the homeomorphisms Hy 'hyHy, . O
b b

THEOREM 2.15. Rim-metrizable smooth fans have a unique hyperspace in the
class of rim-metrizable fans.

PrOOF. Let X be a smooth rim-metrizable fan and let Y be a rim-metrizable
fan. From Theorem 2.12 it follows that there exists an inverse system X =
{Xa,Pab, A} such that every X, is a metrizable smooth fan, every p,, is a mono-
tone surjection and lim X is homeomorphic to X. Similarly, from Theorem 2.11 it
follows that there exists an inverse system Y = {Y;, qup, A} such that every Y, is a
metrizable smooth fan, every g,; is a monotone surjection and limY is homeomor-
phic to Y. If C(X) =~ C(Y), then from Theorem 3.5 it follows that there exists an
a € A such that for every b > a there exists a homeomorphism hy, : C(X;3) = C(V3)
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such that every diagram

cx,) 2L o(x,)

(2.15) lh,, lhc

o) < )
commutes if a < b < ¢. By Theorem 2.13 we infer that there exists a homeomor-
phism Hj : X}, — Y},. Moreover, from the proof of [2, Theorem 4.4] it follows that
Y} is smooth. Theorem 2.14 completes the proof. a

QUESTION 3. Is it true that smooth fans have unique hyperspace in the class
of all non-metric fans?

3. Appendix

Let X = {X,,pap, A} be an inverse system; an element {z,} of the Cartesian
product [[{X, : a € A} is called a thread of X if pgp(zp) = z, for any a,b € A
satisfying a < b. The subspace of [[{X, : a € A} consisting of all threads of X is
called the limit of the inverse system X = {X,, pa, A} and is denoted by lim X or
by lim{X,, pas, A} [6, p. 135].

In the sequel we shall use the following results.

LeMMA 3.1. [6, Corollary 2.5.7]. Any closed subspace Y of the limit X of
an inverse system X = {X,,pa, A} is the limit of the inverse system Xy =
{ClU(Pa(Y)), Pas|CL(ps(Y)), A}

LeMMA 3.2. [6, Corollary 2.5.11]. Let X = {X,,pap, A} be an inverse system

and B a subset cofinal in A. The mapping consisting in restriction all threads from
X =1limX ¢o B is a homeomorphism of X onto the space im{ Xy, py., B}.

3.1. Y-complete inverse systems. We say that an inverse system X =
{Xa,Pab, A} is o-directed if for each sequence ay,as,...,ag,... of the members of
A there is an a € A such that a > ay, for each k € N.

THEOREM 3.1. [12, Theorem 1.1] Let X = {X,, pas, A} be a o-directed inverse
system of compact spaces with surjective bonding mappings and limit X. Let Y be
a metric compact space. For each surjective mapping f : X — Y there exists an
a € A such that for each b > a there exists a mapping g, : Xp — Y such that
[ = gvp.

If the bonding mappings are not surjective, then we consider the inverse system
{pa(X), pas|ps(X), A} which has surjective bonding mappings. Moreover, p,(X) =
N{pab(Xp) : b > a}. Applying Theorem 3.1 we obtain the following theorem.

THEOREM 3.2. Let X = {X,, pap, A} be a o-directed inverse system of compact
spaces with limit X. Let Y be a metric compact space. For each surjective mapping
f: X =Y there exists an a € A such that for each b > a there exists a mapping
v : pp(X) = Y such that f = gyps.
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Let 7 be an infinite cardinal number. We say that a directed set A is 7-complete
if for each chain a; < as < - < g, "+ ,a < T, ay € A, there exists supa, € A.

We say that a transfinite inverse sequence {X,, pap, A} is continuous if for each
limit ordinal 7, 0 < v < w(X), the maps pq : Xy = X, induce a homeomorphism
of the spaces X, and lim{X,,pas,v}. An inverse system X = {X,,pap, A} is
continuous if for each chain B C A with supB = ~ the maps p., : X, = X,
induce a homeomorphism of the spaces X, and lim{X,, pss, B}.

An inverse system {X,, pap, A} is said to be inverse 7-complete if {X,, pap, A}
is continuous and A is 7-complete. An inverse system is said to be an inverse T-
system if it is 7-complete and w(X,) < 7, a € A [18, p. 9]. A directed set A is
o-complete if A is Rg-complete. An inverse system is said to be an inverse o-system
if it is o-complete and w(X,) < Ro, a € A.

THEOREM 3.3. For each Tychonoff cube I"™, m > Ny, there exists an inverse
o-system I = {I°, P,;,, A} of the Hilbert cubes I® such that I™ is homeomorphic to
limI.

ProOF. a) Let us recall that the Tychonoff cube I"™ is the Cartesian product
[[{Ls : s € S}, card(S) = m, I, = [0,1] [6, p. 114]. If card(S) = Ny, the Tychonoff
cube I™ is called the Hilbert cube. Let A be the set of all countable subsets of S
ordered by inclusion. If a C b, then we write a < b. It is clear that A is o-directed.
For each a € A there exists the Hilbert cube I*. If a,b € A and a < b, then there
exists the projection Py : I® — I®. Finally, we have the system I = {I% P,;, A}.

b) Let us prove I = {I% P, A} is an inverse o-system. It is clear that A is
o-directed. Moreover, A is o-complete. Namely, if a1 < as < -- < ap, - is a
countable chain in A, then we have a countable chain a; C as C -+ C ap, - of
countable subsets of S. It is clear that a = |J{a, : n € N} is a countable subset
of S and a = sup a,. It remains to prove that I = {I*, P,;, A} is continuous. Let
B=a1 <a2<--<a,...,a <T,a, €A, be a chain with supa, =7 € A. We
have transfinite inverse sequence {I**, P,_q,, B}. Let us prove that the mappings
Py,.~,a < 7 induce a homeomorphism of the spaces I7 and lim{/%, P,_4,, B}. Let
x € I7. Ttis clear that Py, ~(z) = 4, is a point of I** and that Py, a;(Ta,) = Ta, if
aq < ag. This means that (z,,) is a thread in {I%, Py 4, B}. Set H(x) = (x4, ).
We have the mapping H : I — lim{I%, P,_,,, B}. It is clear that H is continuous,
1-1 and onto. Hence, H is a homeomorphism. Finally, I = {I%, P,;, A} is an inverse
o-system since w(I*) < No.

c) Let us prove that I"™ is homeomorphic to limI. Let z € I™. It is clear
that Py, (z) = z, is a point of I* and that Pu(zp) = z, if a < b. This means
that (z,) is a thread in I = {I%, Py, A}. Set H(x) = (z,). We have the mapping
H : I™ — limI. It is clear that H is continuous, 1-1 and onto. Hence, H is a
homeomorphism. a

THEOREM 3.4. Let X be compact Hausdorff space such that w(X) > ®y. There
exists an inverse o-system X = {X,, pap, A} such that X is homeomorphic to lim X.

PRroOOF. By [6, Theorem 2.3.23.] the space X is embeddable in 1*(X). From
Theorem 3.3 it follows that I(X) is a limit of I = {I, P,;, A}, where every I* is
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the Hilbert cube. Now, X is a closed subspace of limI. Let X, = P,,(X), where
P, : I"™ — I°% is a projection of the Tychonoff cube I"™ onto the Hilbert cube
I*. Let pgp be the restriction of P, onto X;. We have the inverse system X =
{Xa,Pap, A} such that w(X,) < Ng. By virtue of Lemma 3.1 X is homeomorphic
to lim X. Moreover, X is an inverse o-system since I = {I*, P,;, A} is an inverse
o-system. (|

An inverse system X = {X,,pau, A} is said to be factorizable [18, p. 24] if
for each continuous real-valued function f : limX — I = [0,1] there exists an
a € A such that for b > a there exists a continuous function f; : X — I such that
[ = Fopp-

By virtue of Theorem 3.1 we have the following lemma.

LemMA 3.3. If X = {X.,paw, A} is a o-directed inverse system of compact
spaces with surjective bonding mappings, then X is factorizable.

THEOREM 3.5. [18, Theorem 40.]. If X = {X,,pas, A} and Y = {Y,, qup, A}
are factorizable inverse T-systems, then for each mapping f : lim X — limY there
exists a cofinal subset B(f) of A and the mappings fp : Xy — Yy, b € B(f), such
that each diagram

X, 2 X,

(3.1) lfb lfc

Y, <2<y,

commutes and the mapping f is induced by the collections {fy, : b € B(f)}, i.e.,
each diagram

X, 2 limX

(3.2) lfb lf

Y, «2— limY
commutes. If f : lim X — limY is a homeomorphism, then each fy is a homeo-
morphism.

PRrROOF. For the sake of the completeness we give the proof. Let us prove that
there exists a cofinal subset B(f) of A such that every diagram (3.1) commutes.
Let a € A be any member of A. Set ap = a. Suppose that a; € A is defined
for each i € N, ¢ < k. We define a; as follows. Consider the mapping fqa,_, :
limX — Y, ,, where qq, , :limY — Y, _is a natural projection. By Theorem
3.1 there exists ar € A, ar > ar—1, and a mapping fo,_,» : Xp — Yak_1 such
that every diagram commutes for each b > ay. Hence, a is defined for every
k € N. We obtain an increasing sequence E = {ag,a1,...,ag,... ;. There exists
b =supay € A since A is complete. By the definition of aj there exists a mapping
fawp © Xp — Yy, for every k € N. The collection {f,,» : £ € N} induces the
mapping f, : Xp = Um{Y,,,qa,a,, E}. From the continuity of X it follows that

Y} is homeomorphic to im{Y;,, ¢a,a,, £}. This means that f, : X, — Y,. It is
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clear that b > a. Hence, the subset B(f) of A is cofinal in A and the mappings
fo: Xp = Yy, b€ B(f), such that each diagram 3.1 commutes, induce the mapping

f-

If f is a homeomorphism h, then there exists the set B(h) for the mapping f
and the set B(h™!) for f~1. Let B(h) = B(h) N B(h™!). From the commutative
diagram

X, <2 limX

o e

Y, «+2— limY
it follows that gy fp and fpgp are the identity. Hence, f; is a homeomorphism. O

The following theorem will be frequently used.

THEOREM 3.6. Let X = {X,,pap, A} an inverse o-system of metric continua
with monotone surjective bonding mappings pey- If Y = {Ya, qap, A} is an inverse
o-system of metric continua with surjective bonding mappings q.p and if C(lim X) =
C(limY), then there ezists a cofinal subset B of A such that qy. is monotone for
every b,c € B.

Proor. By Lemma 1.1 we have that C'(lim X) is homeomorphic to the limit of
C(X) ={C(X,),C(Pap); A} and C(lim Y) is homeomorphic to the limit of C(Y) =
{C(Y,),C(qap), A}. Let us observe that C'(pgp) is monotone [8, Theorem 3.5]. This
means that C(p,) is monotone. For each a € A consider Z, = C(q,)(lim C(Y)).
From the surjectivity of g, it follows that X,(1) C Z,. By Theorem 3.2 there
exists an a € A such that the following diagram

cX,) £ o(x)
(3.4) lh,, lhb
Za C(Qab) Zb

commutes, where h, and h; are homeomorphisms. We infer that for each {z} €
X.(1) C Z, the set hy[C(pap)] th,({x}) is connected since C(pap) is monotone
[8, Theorem 3.5] (see also [9, pp. 381-387]). This means that [C(qas)] *({z}) =
ho[C (pap)] = h;t({x}) is connected. Hence, C(qqp) is monotone. We infer that gqp
is monotone [8, Theorem 3.5]. O

3.2. Monotone-light factorization and inverse systems. The following
two lemmas are known.

LEMMA 3.4. [20, Theorem 1.2]. Let X be a nondegenerate rim-metrizable
continuum and let Y be a continuous image of X under a light mapping f : X = Y.
Then w(X) = w(Y).

LEMMA 3.5. [20, Theorem 3.2]. Let X be a rim-metrizable continuum and let
f:X =Y be a monotone mapping onto Y. Then Y is rim-metrizable.

The main theorem of this section is the following theorem.
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THEOREM 3.7. Let X = {X,,pap, A} be an inverse system of compact spaces
and surjective bonding mappings pey- Then:

(1) There ezists an inverse system M(X) = {M,, map, A} of compact spaces
such that mgp are monotone surjections and lim X = lim M (X),

(2) If X is o-directed, then M(X) is o-directed,

(3) If X is o-complete, then M (X) is o-complete,

(4) If every X, is a metric space and im X is locally connected (a rim-
metrizable continuum), then every M, is metrizable.

ProOF. The proof of (1) is broken into several steps.

(a) Let X = {X,,pap, A} be an inverse system with limit X and the projections
Do : X = X,, a € A. For every mapping p, : X — X, there exists a monotone-
light factorization p, = {,m,, where m, : X — M, is monotone and ¢, : M, — X,
is light [6, p. 451, Theorem 6.2.22]. We have a collection of spaces M,, a € A.

(b) For every bonding mapping pas : Xy = X, b > a, we define mgyp : M, —
M, as follows. Let x be a point of My, zy = €(z) and z, = pas(xp). Then z
is a component in pgl(mb). This means that there exists a unique component y
of p;1(z,) containing = since p; ' (z5) C pyt(za). Set map(z) = y € M,. The
mapping mgp : My — M, is defined. From the definition of mg, : My — M, it
follows that in the following diagram the rectangle and all triangles commute.

X
Da b
Dab
X Xp
l, Ma mp\ | 4y
Map
M, M,
This means that
Da = Kama:
(35) pabéb - gamaby

MeapMp = My,.
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(c) Transitivity. Let as prove that my. = mapmpe.

Let = be any point of M.. Set z. = {£.(z). This means that there exists a
component C of p; ! (z.) such that m.(C) = x. Let 2, = ppe(£.()). It is clear that
C' is contained in some component D of p, ' (z5). Let © = pap(2). It follows that
D is contained in some component E of p,!(x,). Hence,

(3.7 mpe(z) = my(D).

This means that mepmpe(z) = mepmp(D) = ma(D) = mq(E) = m.(C) since
maepympy = Mg and D C C. On the other hand mg.(z) = m,(C). Hence, for every
x € M. we have

(3.8) Mae(T) = Mapmpe ().

The proof of the transitivity is completed.

(d) We infer that M (X) = {M,, mqp, A} is an inverse system. Let us prove
that lim X and lim M (X) are homeomorphic. Let x be any point of lim M (X).
From (3.6) it follows that the collection {m,(z) : a € A} is a point of lim M (X).
This means that the collection {m, : a € A} induces a continuous mapping m :
lim X — lim M (X) which assigns to the point z the point m(z) = {m.(z) : a €
A} € lim M (X). If  and y are distinct points of lim X, then there exists an a € A
such that p,(z) # pa(y). It is clear that mg(x) # me(y). This means that the
mapping m is 1-1. Similarly one can prove that m is a surjection. Hence m is a
homeomorphism.

(2) Obvious.

(3) It suffices to prove the continuity of M(X). Let X = {X,,pu, A} be
continuous. Let a1 < as < - < aq -+, a < 7, be a transfinite sequence in A.
We have a transfinite well-ordered inverse system {X,,,Pa,a5, < 7} whose limit
spaceis X, € X. We have also a well-ordered inverse system { M, , Mq a5, < T}.
We must to prove that the inverse system {Mg,, M4, 45, < 7} has the limit
homeomorphic to M,_ and that the homeomorphism is induced by the mappings
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Ma,a,. Let Y be the limit of {M,,,ma,q,,@ < 7} and let n,, : Y — M, be the
natural projection, o < 7. For each point € M,_ the collection {m,_q. (%) : @ <
T}is athread in {M,,,Ma, a5, < 7}. Define H(z) = (mg,a, (z) ta <71) €Y. We
have a continuous mapping H : M,  — Y indeced by mappings m,_,. such that
Hmyg, . = ng,, a < 1. Let us prove that H is a homeomorphism. It suffices to
prove that H is onto and 1-1. If y € Y, then y,, = nq, (y) and ma a5 Yas) = Yao -
Every m; ", (ya,) is nonempty and m;!, (ya.) D m;), (Yas), @ < B < 7, since
Magar = MagasMaga,- We infer that ﬂ{m;{}ar (Yo, ) : @ < T} is nonempty subset
of M, . For each point z € {m, ', (ya.): & < 7} we have H(z) =y. Thus, H is
onto. Finally, let us prove that H is 1-1. Let x,y be a pair of distinct point of M, _.
We consider two cases. First, let £, (z) # {4, (y). This means that there exists an
a < 7 such that pa_q, (la. (%)) # Pana, (la, (y)) since X, _ is the limit of the system
{XaurPavas,a < 7} From (3.5) it follows that £, ma,a, (¥) = Paga, (e, (7)) and
gaa Maga, (y) = Paqa- (éa,- (y)) Thus, éaa Maga, (1‘) # éaa Maga, (y) It is clear that
Mo, 0. () # Ma,a.(y). Because of the definition of H it follows that H(z) # H (y).
Consider the case £,_(z) =, (y). Set z = {,_(x) = £, (y). From z # y it follows
that there exists two different components C, D of p;'(z) such that m,, (C) = «
and mg, (D) = y. For every a < 7 we have the point z,, = pa..,(z) such that
M{pate. (Zan) : @ < 7} = z since X, is the limit of the system {Xa,, Paoas, @ < T}
It follows that N{p;'pz s (2a.) : @ < 7} = p7'(2) or N{p7!(2a.) : @ < 7} =
Pat(z). We infer that every component of p,*(z) is contained in some component
of p;al (za.)- If we suppose that for every a < 7 there exists a component K,
of p, (24, ) which contains both C' and D, then we have the continuum ({K,, :
a < 1} [6, Corollary 6.1.19] containing C' and D. This is impossible since C' and
D are components. Hence, there exists an a < 7 such that C and D are in the
different components of p, ! (z,.). We infer that mq, (C) # mq, (D). From (3.6) it
follows that mg_q, M, (C) = ma, (C) and mqg_q, Ma, (D) = mg, (D). This means
that mg_ o, Ma, (C) # Ma a.Ma. (D) or Mg, (T) # Ma_a. (y) since m,_ (C) =z
and mg_(D) = y. From the definition of H it follows that H(z) # H(y). The
continuity is proved.

(4) If X is rim-metrizable, then apply Theorems 3.4 and 3.5. If X is locally
connected, then apply [14, Theorem 1]. O

THEOREM 3.8. Let X = {X,, pap, A} be a o-directed inverse system of compact
spaces and surjective bonding mappings pey- If im X is a locally connected space
(rim-metrizable continuum,), then there exists an a € A such that the projection py
is monotone, for every b > a.

Proor. Let M(X) = {M,,mau, A} be the inverse system of compact met-
ric space M, and monotone bonding mappings mg, (Theorem 3.7) whose limit is
homeomorphic to lim X. From Theorem 3.5 it follows that there exists an a € A
such that for every b > a there exists a homeomorphism hy : Xy — Mj such that
hypy = my, where my, : lim M (X) — M, is a projection. Clearly, my is monotone.
Hence, py is monotone since hypp, = myp and hy : Xy — My is a homeomorphism. O
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