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ABSTRACT. We investigate curvature properties of some nonsemisymmetric
Ricci-semisymmetric hypersurfaces of a semi-Euclidean space 1122*1, n > 35,
which can be locally realized as a warped product.

1. Introduction

A semi-Riemannian manifold (M, g), dimM = n > 3, is said to be semisym-
metric if R-R = 0on M. A semi-Riemannian manifold (M, g), n > 3, is called
Ricci-semisymmetric if R-S = 0 on M. For precise definitions of the symbols used,
we refer to Section 2. It is clear that every semisymmetric manifold is Ricci-semi-
symmetric. The converse statement is not true. Under some additional assumptions
both conditions are equivalent to each other. This problem, named the problem of
P..J. Ryan (cf. [39]), was considered among others in: [1], [2], [3], [4], [7], [10],
[12], [18], [19], [23], [25], [26], and [37] (see also [17] and [28] and references
therein).

A semi-Riemannian manifold (M, g), n > 3, is called a quasi-Finstein manifold
if at every & € M its Ricci tensor S has the form

(1) S=ag+pwew, weTiM, «afB€eTR.

We refer to [28] for a review of results on quasi-Einstein manifolds.
Let M be a hypersurface in a semi-Riemannian space of constant curvature
N 1(c), with signature (s,n +1—s), n > 4. Let Uy be the set of all x € M
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at which the transformation .42 is not a linear combination of the shape operator
A and the identity transformation Id at z. It is known that if (1) is satisfied at
x € M — Uy, then the Weyl tensor ' of M vanishes at x or at this point the
Ricci tensor S of M is proportional to the metric tensor [26, Lemma 4.1(iii)].
With respect to this, we restrict our considerations to the subset Uy C M. Ricci-
semisymmetric quasi-Einstein hypersurfaces in semi-Euclidean spaces E*t1, n > 4,
were investigated in [19] and [26]. We have the following

THEOREM 1.1. Let M be a quasi-Einstein hypersurface of EPT, n > 4, and
let (1) be satisfied on Uy C M.
(¢) [26, Theorem 5.1] On Uy any of the following three conditions is equivalent to
each other:

@) (@ R-S=0, (b) A% =tr(A)A2 —

ER

A e=EL () AW) =0,

n—
where the vector W is related to w by g(W, X) = w(X), X € T, M, and w and o
are defined by (1).
(1) [19, Theorem 5.1]; [26, Corollary 5.2] If at every x € Un one of the conditions:
(2)(a), (2)(b) or (2)(c) is satisfied, then on Up we have
(a) rank (5 - n%g) =1, (BHR-C=QS,C), (c)C-S=0.

It is clear that every semi-Riemannian semisymmetric as well as conformally
flat manifold (M, g), n > 4, realizes trivially at every point of M the following
condition

(%) the tensors R - C and Q(S, C) are linearly dependent.

Semi-Riemannian manifolds satisfying (x) were investigated among others in: [22],
[23], [24] and [29]. (%) is equivalent to R-C = LQ(S,C) on U = {z € M |
Q(S,C) # 0 at x}, where L is some function on U. Examples of nonsemisymmetric
and nonconformally flat manifolds satisfying (x) are given in [21]. We denote by Uy,
the set consisting of all points of U at which the function I, is nonzero. Combining
Theorem 4.1 of [24] with the main results of [25] we obtain

THEOREM 1.2. [28, Theorem 1.3] If M is a hypersurface of EPT, n > 5,
satisfying the condition R -C = LQ(S,C), then at every x € Uy NUL C M we
have:

R.-S=0, C-S=0. R-C=0Q(S.C), C-R="=3

n—2

Q(S, R),
ER
—1

S = n%ngrﬂw@w, weTM, feR,
where the vector W is related to the covector w by g(W, X) =w(X), X € T, M.

Tn Section 2 we fix notations and we give a review of conditions of pseudosym-
metry type. Tn Section 3 we consider Ricci-semisymmetric hypersurfaces M of
N (¢), n > 4. We prove that some curvature conditions of pseudosymmetry
type are fulfilled on the subset Uy C M of such hypersurfaces (see Theorem 3.2).

AT = (A7 - A, e =EL, AW) =0,



WARPED PRODUCT HYPERSURFACES 83

In Section 4 we investigate nonsemisymmetric Ricci-pseudosymmetric hypersur-
faces M of E?*!. n > 4, which are locally warped products. Let g be the metric
induced on M from the metric tensor of the ambient space. Further, we assume
that for every x € Uy C M at which the tensor B - R is nONZEro there exists a
coordinate neighbourhood V C Uy of x such that V.= M x N, ¢ =g xp g, and
(M,g), dimM =p>1, and (N,ﬁ) dim N = n —p > 4, are some semi-Riemannian
manifolds and F is a positive smooth function on M. In addition, we assume that
the manifold (N,g) is not of constant curvature. Now we can prove (see Theo-
rem 4.2) that (M,g), p > 2, is a flat manifold, (]V ,§) is a Ricci-pseudosymmetric
manifold satisfying the curvature conditions presented in Proposition 3.1 and the
function F' satisfies some system of differential equations. Finally, by making use
of Theorem 3.2, we obtain curvature properties of pseudosymmetry type of the
Cartan hypersurfaces of dimension 6, 12 or 24 (Theorem 4.3).

2. Basic notations

Let (M,g), n > 3, be a connected semi-Riemannian manifold of clags C'*°
and let V be its Levi-Civita connection. For a symmetric (0,2)-tensor 4 and a
(0, k)-tensor T, k > 2, we define their Kulkarni-Nomizu product A AT by

(A A T)(X15X27X3aX4;YE’n B 7Yl~2)
= A(X13X4)T(X2aX37YE’>7 B 7Y/~2) + A(X27X3)T(X1,X47Y237 s 7Yl~2)
- A(XlaX3)T(X2,X47YES7 v 7Yl~2) - A(X27X4)T(X1aX3aY37 .. )Yk)'

In the special case, when k& = 2 and the tensor T is a symmetric tensor, the tensor
A AT is the standard Kulkarni-Nomizu product of 4 and T. For a (0, k)-tensor
field T, k > 1, and a symmetric (0, 2)-tensor field A on M, we denote by the (0, k)-
tensor A - T and the (0, % + 2)-tensor fields R - T and Q(A,T), respectively. For
the definition of these tensors, we refer to [19] (see also [5], [17] or [27]). Setting
T=R, T=CorT=S8and A=g¢gor A=_S in the above formulas , we obtain
the tensors: S- R, S-C,R-R, R-C,C-R,C-C,R-S,C-5,Q(g,R), Qg,C),
Q(g,5), Q(S,R), and Q(S, ). The tensors C'- R, C - C and C - S are defined in
the same manner as the tensors R - R and R - .S, respectively. We note that

(3) g/\Q(Avg) :Q(AvG):

where the (0, 4)-tensor G is defined by G = %g Ag.
A semi-Riemannian manifold (M, g) is said to be pseudosymmetric [15] if at
every point of M we have:

(%1) the tensors R - R and Q(g, R) are linearly dependent.

This is equivalent to R-R = LrQ(g,R) on Ur ={z € M | R— ﬁG # 0at z},
where Lg is some function on Ug. Evidently, every semi-Riemannian semisymmet-
ric manifold is pseudosymmetric. There exist pseudosymmetric manifolds which
are nonsemisymmetric and a review of results on pseudosymmetric manifolds is
given in [15] and [40]. A review of recent results on semisymmetric manifolds is
presented in [20].
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It is easy to see that if () holds on a semi-Riemannian manifold (M, g), then
at every point of M we have:

(%2) the tensors R - S and (g, S) are linearly dependent.

The converse statement is not true [13]. A semi-Riemannian manifold (M, g)
is called Ricci-pseudosymmetric if at every point of M the condition (x2) is ful-
filled. The condition (*s) is equivalent to R-S = Ls@{g,5) on Us = {x € M |
S # &g at x}, where Lg is some function on Us. Examples of compact and non-
Einstein Ricci-pseudosymmetric manifolds which are nonpseudosymmetric were
found in [30] and [33]. For instance, in [33, Theorem 1] it was shown that the
Cartan hypersurfaces have that property. We recall that the Cartan hypersurface
in the sphere S"*!(c) is a compact minimal hypersurface with constant principal
curvatures —(3¢)'/2, 0, (3¢)'/? of the same multiplicity. It is known that the Cartan
hypersurfaces are tubes of constant radius over the standard Veronese embeddings
i:FP? = §34+1(c) —» E?4+2 d = 1,2,4,8, of the projective plane FP? in the
sphere $%¢1(c) in a Euclidean space E3¥+2, where F = R (real numbers), C (com-
plex numbers), Q (quaternions) or @ (Cayley numbers), respectively [6]. Every
Cartan hypersurface satisfies the following [33, Proposition 1]

(4) R-S= m@(éﬁﬁ:

where 7 is the scalar curvature of the ambient space. Tn addition, the Cartan
hypersurface in $*(c) is a nonsemisymmetric pseudosymmetric manifold satisfying
R-R = 5Q(g, R) [32, Example 2]. We remark also that every Ricci-semisymmetric
manifold is Ricci-pseudosemisymmetric. Ricci-semisymmetric manifolds were inves-
tigated by several authors (see e.g., [2], [13], [14], [35] and [36]).

It is known that at every point of a hypersurface M of N*T1(c), n > 4, we
have [15, Section 5.5], [31]:

(%3) the tensors R- R — Q(S, R) and Q(g, C) are linearly dependent.

Precisely, on M we have

(=27
n{n+1)

where 7 is the scalar curvature of the ambient space. Tn particular, if the ambient
space is a semi-Euclidean space, then (5) reduces to

(6) R-R=Q(S,R).

Warped products satisfying (x3) were investigated in [8] and [11]. Every quasi-
Einstein conformally flat manifold is a pseudosymmetric manifold satisfying (6)
[15, Section 6.3]. Note also that every pseudosymmetric Einstein manifold satisfies
(x3). Pseudosymmetric manifolds satisfying (x3) were investigated in [21].
Semi-Riemannian manifolds fulfilling (x), (x1), (*2), (x3) or other conditions of
this kind (see e.g., [38]) are called manifolds of pseudosymmetry type [5], [15], [40].
Recently, a review of results on pseudosymmetry type manifolds was presented in

[5].
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Let (M,3) and (N,g), dimM = p, dimN =n—p, 1 < p < n, be semi-
Riemannian manifolds covered by systems of charts {U; 2%} and { Viy® }, respec-
tively. Let I be a positive smooth function on M. The warped product M x g N of
(M,g) and (N, §) is the product manifold M x N with the metric ¢ = g X g defined
byngg—W1g+(FO7T1)7TQg where 7y : MxN = Mandﬂ'g:/\/fx]\/'—>]\/'are
the natural projections on M and N respectively. Let {U x V b, 2P 2Pt =
yl,...,z" = y" P} be a product chart for M x N. The local components of
the metric ¢ = g x g § with respect to this chart are g, = g,, if r = a and s = b,
9rs = Fgopifr = @ and s = 3, and g,; = 0 otherwise, where a,b,c,... € {1,...,p},
a, 8,7, € {p+1,...,n} and r,s,t,... € {1,2,...,n}. We will mark by bars
(resp., by tildes) tensors formed from g (resp., g). The local components I'}, of the

Levi-Civita connection V of M x g N are the following
—a ~q | 1
cm = Fbc: ng = Fﬁ’)’: FZB = _§ga FbgaB= Fgﬁ = ﬁFaégg
or 9]
7 re,=rq, =0, F,=0,F=— = =—.
( ) ab ab : a a a’ a Ora
The local components Rrsty = GrawRuy = ¢row (0,1 — 0T, + Ty, — TV, T8,

Oy = 3 —, of the Riemann—Christoffel curvature tensor R and the local components

S of the Ricci tensor S of the warped product M x g N, which may not vanish
identically, are the following (e.g., see [14], [16]):

_ 1 .

(8) (a) Rabcd = Rabcd: (b) Raabﬁ = _5 abYaf:

- AF ~ - ~
9) Rapys = FRapys — ——Gapys = F(Z(R)agys + ¥Gapns),

= n—op _z 1 A F
(10)  Sus=Sap = = Top,  Sap = Sas §<tr(T) +(n—p-1) 55 )gag,
where
~ ~ I3 ~ ® A F

Z(R)aﬁ’yé = Raﬁ’y(S - Gaﬁ'yﬁ: Q/) = !

(n—p)(n—p-1) (m-pn—-p—1) 4F’
= 1
Top = VoFo = 55 FuFb, tr(T) = trg(T) = Ty, A F = AigF =g“F,F,
and T is the (0, 2)-tensor with the local components T,,. The scalar curvature x
of M x r N is expressed by
1. -p

AF
K—H-FFK—T(U"(T)-{-(H—[)—:U iR )

3. Ricci-pseudosymmetric hypersurfaces

Let M, n > 3, be a connected hypersurface isometrically immersed in a semi-
Riemannian manlfold (N,g"). We denote by ¢ the metric tensor induced on M
from ¢"V. Further, we denote by V and V¥ the Levi-Civita connections corre-
sponding to the metric tensors g and g”, respectively. Let & be a local unit normal
vector field on M in N and let ¢ = gV(£,6) = £1. We can write the Gauss
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formula and the Weingarten formula of (M, g) in (N,¢") in the following form:
VY = VxY +cH(X,Y)€ and Vx& = —AX, respectively, where X,V are vec-
tor fields tangent to M, H is the second fundamental tensor of (M,g) in (N,g"),
A is the shape operator and H¥(X,Y) = g(A*X,Y), try(HF) = try(AF), k > 1,
H' = H and A' = A. We denote by R and R the Riemann-Christoffel curva-
ture tensors of (M, g) and (N, g"V), respectively. The Gauss equation of (M, g) in
(N, g") has the form

(11) R(X1, ..., Xa) = R¥(X1,..., Xa) + g(HAH)<X1,...,X4),

where X1,..., X, are vector fields tangent to M. Let 2" = z"(y*) be the local
parametric expression of (M, g) in (N, g™), where y* and 2" are local coordinates of
M and N, respectively, and h,4,j,k € {1,2,...,n} and p,r,t,u € {1,2,... ,n+1}.
Now (11) yields

ox"

_ pN
(12) Ryi;n = R oyt

priu By B By B + e(Huw Hij — HojHi), By =

where RV, . Rpiji and Hyy, are the local components of the tensors RV, R and H,
respectively. If M is a hypersurface of N*T1(c), n > 4, then (12) turns into

-
(13) Rpiji = e(HppHiy — HpjHyy,) )Ghz’jk:

+ -
n{n+1

where 7 is the scalar curvature of the ambient space and G;;; are the local com-

ponents of the tensor G = %g A g. Contracting (13) with g%/ and ¢g"* we obtain

(14) S = elony () s — 117) + =0,
_ 2 2 (n—1r
(15) Kk =e((trg(H))® — trg(H?)) + r1

respectively, where Sy are the local components of the Ricci tensor S and k is
the scalar curvature of (M, g). Using (14) and Theorem 4.1 of [31] we can deduce
that Uy C UoNUs C M, where the subset Us C M, n > 4, is defined by
Uo={x € M:C#0 at }. We note that in the case when M is a hypersurface
of EPtL, n >4, (13) reduces to
(16) Rpijr = e(HppHiy — HpjHy).
For a symmetric (0,2)-tensor A and a (0,4)-tensor T' we define the (0, 6)-tensor
U(A,T) by
U(A’T)(Xla ce 7X4; X»Y)
= —T(X ANaY) X1, X2, X3, Xg) + T((X A4 Y) X, X1, X, Xo)
—T((X ANaY) X3, Xa, X1, X2) + T((X Aa V) X4, X3, X1, Xo).

LemMA 3.1. Let (M, g), n >4, be a semi-Riemannian manifold.
(1) If A is a symmetric (0,2)-tensor and T a generalized curvature tensor on M,
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then on M we have U(A,T) = Q(A,T).
(i) If A and B are symmetric (0,2)-tensors on M and the tensor T is defined by

T(X1, Xa, X3, X4) = B((X4 A4 X3) X2, X1)
= A(X,, X3)B(X1, Xy4) — A(Xo, X4)B(Xy, X3),
then on M we have U(A,T) = —1Q(B, A A A).
(zi1) If A and B are symmetric (0,2)-tensors on M and the tensor T is defined by
T(X1, Xa, X3, X4) = A((X4 A X3) X3, X1)
= A(X,, X4)B(Xs, X3) — A(X1, X3)B(X2, X4),
then on M we have U(A,T) = 0.

PrOOF. Our assertions are immediate consequences of the definitions of the
given tensors. d

PROPOSITION 3.1. Let (M, g), n >4, be a semi-Riemannian manifold. If T is
the (0,4)-tensor on M defined by T(X, Xo, X3, X4) = R(SX, X2, X3, X4) satisfies

R(SX, Xy, X3, X4) = a1 R(X, X2, X3, X4) + a2 S (X4 Ny X3) X5, X)
(17) +azg((Xa As X3)Xo, X) + asG(X, Xo, X3, X4),

then on M we have

(18) 5% = (ay + (n — Das — a3)S + (kaz + (n — 1)as)g,
(19) R-S = (a2 —a3)Q(g,5).
(20) c.szniz(nfl—al—@—(n—g)ag)Q(gﬂ),
(21) S-R=—-4a1R — 2(az + az)g A S — 4a4G,
(22) U(gvT) = alQ(gaR) - GQQ(S7G):
(23)
C.R-RC=—— 0. )+ ( —al)Q(gR)+ B _0(8.6).
n-—2 ’ n—2\n-—1 ’ n—2 ’

Proor. (18), (19), (20) and (21) are immediate consequences of (17). From
(17), in view of Lemma 3.1, we obtain also (22). Further, on M we have [37]

Q9. R) - ——Q(g.T),

1
C-R=R-R-——Q(S,R) + —

_
(n—2)(n-1)
which by the identity

turns into
1 1
CR—RC+mg/\(RS)—mQ(S7R)

K 1
mQ(Q,R) - ——Q(g,T).

(25) + I
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Applying to this (3), (17), (19) and Lemma 3.1 we obtain (23), which completes
the proof. |

THEOREM 3.1. Let M be a hypersurface of N Tt(c), n > 4. If the condition

(26) H? =tr,(H)H* + \H,
is satisfied on M, then on M we have: (4), (17),
-y (n—Dur
2 2 (n _ _
27) S ( +n(n+1)>5 n(n+1) 7
1 K T
(28) C’-S—m(m—u—mﬁ?(%s):
dpr
2 R=-4 = _ =R o
(29) SR = n(n+1)g/\S+n(n+1)G'
1 1 K
(30) C‘R—R'C——mQ(S,R)ﬂLm(m—M)Q(%R):
where A and p are some functions on M and
T T (n—1rt
1 = U, = —, =0, =——, = —=—cA\.
(31) ar=p. az n(n+1) a3 =0, as nin+1)’ K n(n + 1) A

Proor. Transvecting (14) with H," = ¢"*H}, and using (26) we obtain
(32) HfSr;{. = ,Uij-

Next, transvecting (13) with S, = ¢"°$,,, and using (32) we get

-
(33) Sy Rpiji = eu(HyyHypy, — Hyp Hop ) + m(gijsmk — Git:Smj)-
This, by symmetrization in m, 4, yields (4). Further, (33), by (13), turns into
T %
Sop Rriji = pRmajr + m(gijsmk — Git:Smj) — (£ 1) ik

which, evidently, gives (17) and (31). Now, Proposition 3.1 completes the proof. O

Ag an immediate consequence of (14), (32) and Theorem 3.1 we have

COROLLARY 3.1. [27, Theorem 3.1] On every Einstein hypersurface M of
N l(c), n >4, we have R-C —-C-R= mnn @9 R).

COROLLARY 3.2. The Einstein hypersurfaces considered in [34] satisfy C-R =
Q. R).

THEOREM 3.2. Let M be a Ricci-pseudosymmetric hypersurface of N*"1(c),
n > 4. Then (4), (17) and (27)-(31) hold on Uy C M.

Proor. From Theorem 3.1 of [9] it follows that (26) holds on Up. Now The-
orem 3.1 completes the proof. O

Theorem 3.2, together with Proposition 3.2 and Theorem 3.1 of [12], implies
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THEOREM 3.3. Let M be a nonsemisymmetric Ricci-semisymmetric hypersur-
face of BT n > 5. Then
(a) H®=tr,(H)H*+ \H,
(b) H(SXl,XQ) = —6/\H(X1,X2):
(34) (C) R($X17X2,X3,X4) = —6)\R(X1,X27X3,X4>:

on the subset Uy C M, where X\ is some function on Ug.

4. Ricci-semisymmetric warped product hypersurfaces

Tn [18] examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces were
given. In construction of these examples the following results were applied.
THEOREM 4.1. [18, Proposition 4.1] Let (M,3), dim M = p > 2, be a semi-
Riemannian manifold defined in Example 3.1 of [18] and let (N,q), dim N =n—p >
1, be a semi-Riemannian manifold isometric to a hypersurface of N*~PT1(c). Let
M xr N be the warped product of (M,q) and (N,§) with F and cy are defined by
(12) and (13) of [18], respectively, and let
-
(n—p)(n-p+1)
where T is the scalar curvature of NV=PT1(c). Then we have
(1) M x g N can be realized locally as a hypersurface of ENTL.

Cg =

(i) If (N,g), n —p = 4, is a semisymmetric Einstein manifold not of constant
curvature, then M xp N is a nonsemisymmetric Ricci-semisymmetric manifold
which can be locally realized as a hypersurface of ENTL,
(¢ir) If (N,g), Us = N, n—p > 4, is a non-Einstein Ricci-pseudosymmetric
manifold satisfying R-R = LzQ(g, S) on Usg, with Lz = m, then M xp N
is a nonsemisymmetric Ricci-semisymmetric manifold, which can be locally realized
as a hypersurface of Ent1,
With respect to the above theorem, we have the following converse statement.
THEOREM 4.2. Let M be a hypersurface in a semi-Euclidean space EPTY, n >

5, and let g be the metric induced on M from the metric tensor of EXTL. Let
U C Uy C M be an open submanifold of M such that (U,g) = M Xp ]\7, where
(M,q), p=dim ™ >1 and (N,§), n—p = dim N > 4, are some semi-Riemannian
manifolds and F' is the warping function. Let x be a point of U at which the tensors
R-R and Z(R) are nonzero and let V. C U be a coordinate neighbourhood of x such
that the tensors R - R and Z(IA%) are nonzero at every point of V.

(1) The following relations are fulfilled on V

_ - AF
(@) Rapea =0, (b)) Toq=0, (o Vo

(3) (@ =5~ (= p)n-p- Do)

= ¢g = const,
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(#3) The local components of the curvature tensor R and the Ricci tensor S of (U, g)
and the second fundamental tensor H of U in M which may not vanish identically
on 'V are the following

(36) (a) Ragys = EF(ﬁaéﬁB’r - ﬁa’vﬁﬁzi): (b) ﬁa@ = ﬁaé(xp+17 conxh),
(37) Saﬁ = gaﬁ - (n —pP—- 1)CO§QB:

(38) () Has = VFHas, (b) VaHss = VsHos.

(vi1) The following relation is satisfied on V

(39) (E : E)aﬁ’yéeu - Q(§7 E)a@’y(ieu = —(’I’L ' 2 2)COQ(§7 é)a@’yéeu-

(i) If M is a Ricci-semisymmetric hypersurface, then on' V. we have

(40) S Ru@’ﬂS (n=p—1)co - ‘?/\F)( afys — COGaB'wS) + 00(96'75046 57,(355;047);
where A is defined by (34)(c).

ProoF. By making use of (8), (9), (10) and (16) we obtain on V the following
relations

(41) Rabcd = Rypea = E(Hadec — Hachd);
1 ~
(42) ~5Taadap = Raapa = e(HoaHop — HopHoa),
_ ALF ~
(43) FRogys — 4 Gopys = Ragys = €(H04(5HB’Y — Ha’YHBtS):
(44) 0= Ruapy = E(Ha’yHaﬁ - HaBHa'y):
_ n—
(45) Sad = Sad — Q—F,pTab:
o 1 AlF —~
(46) Sa6—sa6_§<tr(T)+(n—p—1) oF )ga(s.

We note that if all components of the form Hy,s vanish at a point y € V, then from
(43) it follows that the tensor Z(R) vanishes at y. a contradiction. Thus, at every
point of V' at least one of the local components H,s must be nonzero. Therefore,
from (44) we can deduce that H,, = 0 at every point of V. Now (42) reduces to

_%Tadgaﬁ = 5HadHozB:

Whence Tog = pHyg and p = — 25 NaﬁHag. Thus (47) turns into Heq(Hap +
£LGap) = 0. Tf at least one of the local components H,q is nonzero at a point
y € V., then Hyg = —Gap at y, whence, by (43), at y we have Z(ﬁ) =0, a
contradiction. Thus all the components of H of the form H,y must vanish at every
point of V. It means that (41) reduces on V' to (35)(a), whence

(48) Seq = 0.
On the other hand, from Proposition 3.2 of [8] it follows that S.q + 35 Tad =

Applying this in (45) we obtain S,q — n_;}_lT ¢ = 0, which, by (48), turns into

(35)(b). Since the tensor H is a Codazzi tensor, we have V,Hg, = VgH,, and

(47)
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VoHgy = VgH,~. From these relations, by making use of (7), we obtain (36)(b)
and (38). Further, (43) and (38)(a) yield (35)(c). Now (46) turns into (35)(d).
(39) is an immediate consequence of Proposition 3.3 of [8] and (38)(a) and (38)(b).
Finally, using (9), (34)(c), (35)(b), (35)(c) and (37), we can check that (40) holds
on V. Our theorem is thus proved. O

COROLLARY 4.1. On the manifold (V,q), defined in Theorem 4.2, the following
relations are satisfied: (17)—(23) and ay = p=(n—p—1)cg—eAF, as =g, a3 =0
and ay = —co{{n —p—1)cg — eF).

We finish this section with the following

THEOREM 4.3. On every Cartan hypersurface M of S"T1(c), n = 6,12 or 24,
we have: (4), (17), and

(49) alzu:%, aQZm, az =0, a4:—n(f(;—+4)17)2,
P
(52) ¢-5= <n_2>§2:f§;(n+n@<g’5>=
B RC=QR- 20 - AT 0(s.6),
55 C-R="50 0 - SR - 0056,
(56) R-C=CR= 5 Q(S.R) ~ Q0. ).
(57)
¢ o="23qm - I g - BT g6,

ProovF. First of all, we note that Uy = M. Let p be the positive principal
curvature of M. From the properties of the Cartan hypersurfaces it follows that
on M we have p?> = 3¢ = %, try(H) = 0 and tr,(H?) = 2. Applying
these relations to (15) we obtain (50). It is clear that H® = p?H on M. Thus,
in view of Theorem 3.2, the relations (17), (49), (51), (52) and (53) are fulfilled
on M. Further, (3), (5), (4) and (24) yield (54). Next, applying (17) and (54)
to (25) we obtain (55). Finally, (57) is an immediate consequence of the identity
C-C=C-R+ m@(& @) and (50) and (55). Our theorem is thus

proved. |
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