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CONVERGENCE OF RATIOS AND DIFFERENCES
OF TWO ORDER STATISTICS

Jef L. Teugels and Giovanni Vanroelen

ABSTRACT. We study some direct and converse results for functions involving
ratios or differences of two ascending order statistics. In our proofs, we rely
heavily on techniques from the theory of regular variation and its adaptations.

1. Introduction

Let X7, Xo,..., X, be a sample of independent random variables with common

i b

distribution F' and tail quantile function U
Ulz):=inf{fueR: Flu) >1—-1/x}, forz>1.

Forn =1, let X7 < X; < -+- < X be the corresponding order statistics. Further,
denote by x4 := sup{z : F(z) < 1} the upper endpoint of F; similarly, z_ :=
inf{z : F(z) > 0} is the lower endpoint of F. Although this requirement is not
always needed, we will assume for simplicity that F' is continuous.

Tn the sixties, several authors Arov and Bobrov [2], Breiman [5], Dwass [6],
Lamperti [12] and Rossberg [13, 14| recognized the importance of a concept from
real analysis within the realm of extreme value theory. The concept of regular
variation had already been introduced by Karamata in 1930, [11]. However, its
use in a probabilistic context was not fully recognized. While Gnedenko [9] gave a
version for the solution of the domain of attraction problem for the maximum X',
the formulation is still in the form of a relation like

. 1= F(zu)
Nowadays we say that 1 — F(z) varies regularly with order —p < 0. The crowning
piece of this development within extreme value theory is due to de Haan [10] who
showed the overall use of functions of regular variation in the solution of the domain
of attraction problem.

Going one step further, Dwass [6], Lamperti [12] and Rossberg [13] showed the
relevance of regular variation for the limiting distribution of successive quotients

=u"* forallu>0.
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114 TEUGELS AND VANROELEN

of order statistics (X;_,/X ;)7 , m fixed. In particular, they showed that

under the condition (1.1), the quotients (X _ /X5 _541)7 1 become asymptotically
independent with marginal distribution functions (¢/#)7,, 0 < t < 1. That regular
variation was actually not only sufficient but also necessary has been shown in 1975

by Smid and Stam [15]. They proved the following result:
PropoSITION 1. If for some 5 > 1, t € (0,1) and p > 0,

X:_ . .
lim P| L <t] =¢7,
n—oc n—j+1

then 1 — F(z) varies reqularly of order —p as = — oo.

Bingham and Teugels [3] cxtended this result in two ways. First they showed
that the explicit form of the limit on the right was not needed. Secondly, the
distance between the indices of the order statistics could be taken arbitrarily as
long as it was fixed. More precisely:

PROPOSITION 2. Let s € {0,1,2,...}, r € {1,2,...} be fized integers. Let F be
concentrated on the positive half-line. If X* /X * _ converges in distribution to

a non-degenerate limit, then for some p > 0, 1 — F(z) varies regularly of order —p
as x — 0o.

In section 3, we present a similar converse result for distribution functions with
a finite upper endpoint. Especially when x; = 0 a new situation seems to appear
when a quotient of order statistics converges to a non-degenerate limit distribution.
More precisely, we will show how the convergence of the ratios (or their reciprocals)

_ X
(1.2) Un(r,s) = mi*"_s for s € {0,1,...} and r € {1,2,...},
Tt _X'n,—r—s

to a non-degenerate limit is linked to the regular variation of 1 — F(z — 1/z) as
x — oo. One way of looking at the above results is the following: in Propositions
1 and 2 the valuc of one specific large order statistic is normalized by the value
of another large order statistic. A similar result for the quantity U,(r,s) means
that the distance between a large order statistic and the right end point of the
distribution can be normalized by a similar random distance induced by another
large order statistic.

In contrast with the above, section 4 deals with the quotient as a single quantity.
We introduce appropriate normalizing constants {d,, } such that for n — oc

X5 /X1

n—r—s

dn

converges to a non-degenerate limit. For these results, it will be necessary to assume
that F' belongs to the so-called extremal-type class C,(g), by which we mean that
there exists a real-valued constant v and an ultimately positive auxiliary function
g such that

(1.3) Qr(r,s):=

(1.4) lim

= v’ v = k. (u for all « > 0.
e ()
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For v = 0, ho(u) = logu. Actually, the limit on the right of (1.4) does not have to
be specified. From the mere existence of a non-trivial limit, it follows that g has to
be regularly varying with an extreme value index coined v and that then the limit
has to be h,(.).

Moreover it is known from extreme value theory that if v > 0, then g(z)/U(z)
— v, while if ¥ € 0, then g(z)/(z+ — U(x)) = —y. These two side conditions tell
us that for v # 0 condition (1.4) reduces to Karamata’s classical regular variation.
The only novelty appears in the case v = 0 where the condition (1.4) leads to
the de Haan-class of slowly varying functlions, a subclass of the one introduced by
Karamata.

In what follows we will show that therc is a close connection between the asymp-
totic behaviour of Q,,(r, s) and the asymptotic behaviour of normalized differences
of two ascending order statistics. Finally, we discuss a converse theorem for these
differences. But before doing that, we collect some useful auxiliary properties in
section 2.

2. Preliminaries

For our purposes, it is useful to have a couple of equivalent forms of the C.-
condition (1.4) at our disposal.

PROPOSITION 3. Let v € R be a real-valued constant and g an ultimately posi-
tive auxiliary function. Then the following assertions are equivalent:

(i) Fe C’y(g)i
(ii) for all u for which 1 4+ ~vu > 0,

. 1= F(z+uh(z)) 1
2.1 1 = =
(2.1) S — ) My (1)
where hoU = g and h is self-neglecting, i.e., for x T
h(z + vh(z))
_ 1 ;
h() = 1+ ~vu;
(iii) for all u for which 1 4+ ~vu > 0,
(2:2) {1l = F(U(z) + ug(x))} = ny(u),

as T — 00.

Notice that in the above 7,(u) = (1 + yu)~/7 where for v = 0 we read

u

no(u) = e ™.

For the proof of this result, see for example de Haan [10], Bingham et al. [4]
or Embrechts et al. [7]. Ts is useful to remark that the explicit forms of the right
hand sides in the equations (2.1) and (2.2) are not needed; they follow from the
existence of a non-trivial limit as was already illustrated before.

Along with the selection principle, a crucial role in the prools will be played by
the following lemma whose proof can be found in [3]:
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LEMMA 1. Assume that form € {1,2,...}
/ e f(uw)du = Cm™"
0

where 0 < C < oo, v >0 and f(u) 2 0. Then f(u) = %u”_l.

For later relerence, we write down an explicit expression for the expectation
of functions of two order statistics. Let s € {0,1,2,...}, r € {1,2,...} be fixed
integers. Let & be any measurable function of two variates. If it exists, then the
joint expectation of the quantity k(X _,_ ., X% ) is given by
(2.3)

Tt ) = B X)) = 22 [T W@ AR @)
where
n!
Crors i (n—7r—s—1)!
and
@) W)= [ HelF) - FEI - FOPFG).

The above expression can be easily derived from a combinatorial argument. See for
example [1] or [2].

We first change z into u by the substitution F(z) = 1 — u/n or in terms
of the tail quantile function by z = U(n/u). Secondly, we change y into v by
F(y) =1—(w)/nor by y = U(n/(uv)). Then (2.4) can be written in terms of the
beta distribution

Yg-1! [, q_1
Bm(v)—(p(’i 1)?((1_)1)! /0 P=1(1 — )9-Ldt.

where p > 0, ¢ > 0 and 0 < v < 1. Indeed,

e (0 (2)) = 0 ()

u (r+s)! \n

where in turn

(2.5) )= [k (0(2) o0 () aBennto).

u

Therefore, we conclude that (2.3) is also equal to

r,8 C",T,S > r,8 u nor—s—1 r
@6 T = st [ mrw[i- 2] a Ty (),

where I, is the indicator function of the set A. This relation will be the starting
point of the subsequent analysis.
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3. Convergence of ratios of two order statistics
with finite upper endpoint

The case of an infinite endpoint has been treated in [3]. We therefore treat the
converse result for the ratio U, (r, s) as introduced in (1.2) for the case of finite z . .

THEOREM 1. Let s > 0, v > 1 be fized integers. Let F' be a distribution with
finite upper endpoint x. If U,(r,s) converges in distribution to a non-degenerate
limit, then for some p > 0, 1 — F(x — 1/x) varies reqularly of order —p as © — oo.

PRrROOF. Take 0 < t < 1 and choose k(z,y) = Ij » (“_z). Then (2.5) simpli-

T4 —
fies to

Hp®(u) = /01 Ijo.x (%) dBsy1,0(v).

Replace the expression in between the large brackets of the integrand by w. Then

1
Ho () = / Lo (0)dBy 1,0 (70 (03 0)) = Ba o (7t 0)),

=2 {1 Pl (o0 ()1}

Consequently, the distribution function of U,,(r,s), say J>*(t), is given by

(3.1) _ t
Tt () = &/0 Boi1 r(mn(t;u)) [1 — E}

(r+ s)lnrtstl n

where

u’""'sI[O’n] (u)du.

For every natural n, 7,(¢; u) is bounded and monotonically non-decreasing in u
and t. Therefore, by a bivariate extension of the selection principle (see for example
Widder [16]) there exists a set of integers nq < na < --- and a bounded function
7@ (t;u) such that for all » > 0 and t € [0,1]

O (tu) = lim 7, ().
1> 0C

We follow the procedure as in [3]. Take any natural integer m. First replace n
by mn; in the above formula. Then replace the variable of integration u by vm. A
little algebra transforms (3.1) into the form

:| nim—r—s—1

7,8 _ Cmni,r,s * « _ 3
Jmni(t) - (7"‘1‘ S)!n;‘+s+1/0 BS+1,T(Tmni(tavm)) |:1 n;

X 0" Ijg mn,j (vm)du.
However, by its definition 7o, (t,vm) = 7,,(¢t,v) while also Ijg yp,j(vm) =
It 5;1(v). We now let n; — oc to find that for every m € {1,2,...}
mr+s+1 oc .
JP ) = —— e ™ B, 1 (7Ot u))u" o du,
=T | 1 (O,

where, by assumption, J™*(¢) can be taken to be the non-degenerate limit distribu-
tion of J*(¢). Thanks to lemma 1, we can solve this integral equation and obtain
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that, independent of the subsequence,
(3.2) Bs+1,r(7(i)(t;u)) = J"%(t).

Both sides of this equation are distributions on [0,1]. Therefore, 7()(t,u) does
neither depend on the subsequence nor on the quantity . Therelore, the sequence
Tn(t; u) itself has to converge to a function a(t), independent of u. If we take u = 1,
we get for all ¢ € [0,1] and for n — oc

1—F(zy — (z+ —UR))
1-F(zy = (z+ —U(n)))
1

Putting a,, = (z. — U{n))~! and t = y~!(y > 1) we get for n — oc that a, — o<

and
1—F(zy —1/(any)) _}a(l)

1—F(zy —1/a,) y

By the monotonicity of F' and the theory of regular variation, a{l/y) = y~* for
some p > 0and 1 — F(x, — 1/x) = 2~*?I(x) with I slowly varying. Since J™*(t) is
non-degenerate, p > 0. This finishes the proof. O

— a(t).

Notice that from (3.2) we find that J™*(¢) = Bsy1,~(a(t)) = Bst1,-(¢?), where
J™4(t) is the limit distribution of U,,(r, s).

4. Convergence of differences of two order statistics

We first formulate the dircct theorem for the ratio @, (r,s) as introduced in
(1.3).

THEOREM 2. Let s € {0,1,...}, » € {1,2,...} be fired integers. Assume F €
C,(g). Then there exist real constants d,, = g(n)/U(n) such that Q,(r, s) converges
in distribution to a non-degenerate limit, say Y, » o where fort >0

1 00 (14~ytuY) =2/ 1 — )1
R Sy A = A
" (r+8)! J(_pyy-1/+ 0 B(s+1,r)

if v <0 and x; # 0 and where
(L4t) = (1 — v)r=1os
PWone >0 = [ oty = Ba (1), (14+1t>0)
ifvy>0o0rz, =0.

Proor. We follow the classical Helly-Bray approach. Let & be an arbitrary
bounded and continuous function. Then (2.6) becomes
(4.1)

B{HQu(ro)} = (it [ ) [1- )T e

(r+ s)lnrtstl n
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Here H>*(u) can be written in an alternative form thanks to the symmetry property
of the beta distribution in that Bs11 (1 —v) =1 — B, ¢11(v). Therefore,

1 [ U/i-—v)
T () = / K % dByss1(v).
0 n

Replace the expression between brackets by a new variable w. Then

an(u)
HYo(u) = / k() By 1 (un (105 1)),
where
_xy —Un/u)
(W) = = Tnu)
and where

,un(w;u):l—%{l—F[U<%) (1+dnw)}}.

Notice that for every u > 0, pn,(.; u) is a probability distribution function on [0, co).
Now define f(z) = g(x)/U(z). Then d,, = f(n) and

it =12 i ()0 () 0]

Recall that our assumption on F' € C,(g) implies something on the behaviour of
g(x) in comparison with U(z) or with x+ — U(z) when x — co. It takes a bit of
calculations to check that for every A > 0

i TOD) o 90) [UO) - U) g@)
T T g() { i@ U@ “}
_{m, if v <0and 2y #0

1, ify>=200rzy =0

Notice the somewhat unexpected discontinuity for ;, = 0. The equation above
shows that f is regularly varying with index v if v < 0 and =, # 0, or with index
lif¥>0o0rz,; =0.

To finish the analysis, we better distinguish three cases:

Case 1. x4 = o0o. Use part (ii7) of Proposition 3 to see that for n — oc

pn(wsu) = 1 —ny(w),

which is known in the literature as a generalized Pareto distribution. This implies
that for n — oc

o) = 1) o= [ " h(w)dBy e (1 — 7y (w))

Case 2. . = 0. Again, p,(w;u) converges to a generalized Pareto distribution

concentrated on the interval [0, —1/+] where v < 0 as 1 < o0. Indeed, for n — oo,

an(u) = —% — —%. We find thc same expression as in case 1.
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Case 3. 1 < oc and z; # 0. Now, i, (w;u) = 1 —ny(uvw) as n — oc and

ot 1 Ee U S L
A A O O R

This implies that for n — oc

1,~7

H(u) = H (u) = /0 Y R(w)dBraia (1 - (u7w)) -

For the three cases at hand we see that, under our conditions, H*(u) converges
properly to H%(u). To finish the limiting procedure it suffices to perform the usual
analysis to the expression (4.1) leading to

1 o
I / e u T D% (u)du.
*Jo

E{k(Qn(r.s))} = Gty

Finally, put k(w) = If; o) (w) and perform a little algebra to find the expression
in the statement of the theorem. This finishes the proof. (|

The above result can also be cast in the form of a difference of normalized
order statistics to which the classical Fisher-Tippett theorem [8] can be applied.
For assume F' € C,(g). Then we can take the positive constants a,, = g(n) and real
constants b, = U(n) such that

X —b, X* — b, W X5 —by -t
Qn(r,s):{ n—s ~ n—r—s } {a n—r—s +1}

Oy, an, by, Oy,

converges in distribution to a non-degenerate limit with tail distribution as dec-
scribed in theorem2. Recall that g(n)/U(n) — v > 0 while otherwise the limit is
zero. Therefore, unless v > 0, the asymptotic behaviour of @, (r, s) is the same as
the asymptotic behaviour of a normalized difference of two large order statistics.
In general, for these diflerences, the following converse result can be proven.
THEOREM 3. Let s€{0,1,2,...},r€{1,2,...} be fized integers. Let X1, X,...
be a sample of independent r.v. with common distribution F and tail quantile
function U. Let {a,} be a regularly varying sequence of positive constants. If
D,(r.s) = (X} _,— X* )/an converges in distribution to a non-degenerate

n—r—s

limit, then for some auziliary function g, F' € C,(g).

PROOF. Take t € Ry and choose k(z,y) = Ijo,+ (%) in (2.5). Then, by the
same operation as before, (2.5) is equal to

H5 () = /01 Los (U(n/(U(l —v) U(ﬂ/%)) dByess (v)

an

cn (u)
- / o, (W)d By, s+1 (vn(w; u)),
0

zy —U(n/u)

an

(4.2) en(u) =
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and
(4.3) vp(wiu)=1-— %{1—F<U (%)—I—anw)}.

Notice that for every u > 0, v,(.; ) is a probability distribution function on [0, c0).
This means that for every ¢ > 0, H*(u) = B, s+1(vn(t;u)). Moreover, the distri-
bution of D,,(r,s), say Gi*(t), is given by

n—r—s—1
u} ur+sI[0’n:(u)du.

G (t) = L[) By si1(vn(t;u)) |:1 T,

(r+ s)lnrtstl n
Perform the same operations as in the proof of Theorem 2. Then

ap.
ane. (Lt)

amni

Crnms.r smr+s+1 oo u
= \T; B (¢ 1——
(r + s)l(mn;) 511 J, Tt (¥n(t;u)) nl_

We can take the limit ¢ — oc on the right hand side. On the left the sequence of
distributions converges by assumption. Also the argument converges by the regular
variation of the sequence a,. If we put amn,/an, = Pm, then p,, = m? for some
o € R. In particular, p; = 1. We conclude that for every m € {1,2,...}

mn;—r—s—1
} u Iy (w)du

7,8 mrrstl o pee —mu () r+s
(4.4) G"*(t/pm) = m/o e By s (v (G u))u" T du,
where G™*(¢) is the non-degenerate limit distribution of G7*(¢). Now, divide both
sides of (4.4) by G™3(t) and change u into —logz. Then for all m € {1,2,...} and
t>0

G (tfom) / et Bt (0t — log 1)) (—log )™=
mrrs G (1) (r+ 5)1G7s(t)

1
::/ ™S () da.
0

If we put m = 1, then we see that f™%(¢;x) is a density function on [0, 1] with
moments given by

! m pr,s Gr’s(t/pm+1)
/033 [ () de = (m + 1)r+st1Grs(t)”

These moments uniquely determine the density. Transforming back we find that
the limit function v (¢;u) does not depend on the subsequence we have used.
Therefore, the whole sequence v, (¢;u) has to converge to a function v(¢;u). Now,
define for all % > 0: g(u) = ap,).- Then, putting » = 1, we have that for all £ > 0
and for n — o

1= n{l — F(U(n) + g(n)t)} — v(t,1).

So, using part (#i) of Proposition 3, we can conclude that F € C,(g). This finishes
the proof. (|
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From (4.3) and (4.2), we find that for all ¢ > 0 and for n —

valtiu) =1 — % {1 "y <U (%) +g (%) mt>} S u(tu) =1 -y (u™t)

and - )
() = T (n/u) g(nju) cu) = — a7
g(n/u)  g(n) %
if z, < oo. This means that, if z; < oo, v(f;u) is a probability distribution on

[0, ¢(w)]. Finally, we conclude that
1 oc
G™o(t) = m/o Brsi1(v(tu))e “u T du,

where G™*(t) is the limit distribution function of D, (7, s).
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