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Abstract. Our goal is to study the (2m)-th asymptotic behavior for the
family of stochastic processes x" = (x"

t
, t 2 [t0;1)), depending on a \s-

mall" parameter " 2 (0; 1). We consider the case when x" is the solution
of an Itô's stohastic integro-di�erential equation whose coeÆcients are ad-
ditionally perturbed. We compare the solution x" with the solution of an
appropriate unperturbed equation of the equal type. SuÆcient condition-
s under which these solutions are close in the (2m)-th moment sense on
intervals whose length tends to in�nity are given.

1. Introduction

In many �elds of physical and engineering sciences there are large numbers of
real phenomena depending on perturbations, which are mathematically modeled
and described by generalized Itô type stochastic di�erential equations (for exam-
ple, see [3], [6], [16]). In this paper we consider the problems of perturbations
for one of the important, very general class of these equations, for the stochastic
integrodi�erential equation

(1.1)

dxt =

�
a1(t; xt) +

tZ
t0

a2(t; s; xs) ds+

tZ
t0

a3(t; s; xs) dws

�
dt

+

�
b1(t; xt) +

tZ
t0

b2(t; s; xs) ds+

tZ
t0

b3(t; s; xs) dws

�
dwt; t 2 [t0; T ];

xt0 = x0 a.s.

described in details in the recent work of Berger and Mizel [2] on general forms of
Ito{Volterra stochastic integrodi�erential equations. Here w = (wt; t 2 R) is an
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Rk{valued normalized Brownian motion de�ned on a complete probability space
(
;F ; P ), with a natural �ltration fFt; t 2 Rg of nondecreasing sub �{algebras of
F , x0 is a random variable independent of w, xt is an R

n{valued stochastic process,
the functions

a1 : [t0; T ]�Rn ! Rn; b1 : [t0; T ]�Rn ! Rn �Rk;

a2 : J �Rn ! Rn; b2 : J �Rn ! Rn �Rk;

a3 : J �Rn ! Rn �Rk; b3 : J �Rn ! Rn �Rk �Rk;

where J = f (t; s) : t0 � s � t � Tg, are assumed to be Borel measurable on their
domains.

An Rn-valued stochastic process xt is a (strong) solution of the equation (1.1)
on t 2 [t0; T ] if:

| xt is nonanticipating for t 2 [t0; T ];
| the processes

â1(t) = a1(t; xt); â2(t; s) = a2(t; s; xs); â3(t; s) = a3(t; s; xs);

b̂1(t) = b1(t; xt); b̂2(t; s) = b2(t; s; xs); b̂3(t; s) = b3(t; s; xs);

are such that
TR
t0

jâ1(t)jdt <1 a.s.,
TR
t0

jb̂1(t)j
2dt <1 a.s.,

TR
t0

tR
t0

jâ2(t; s)jdsdt <1 a.s.,

and â3; b̂2; b̂3 satisfy
TR
t0

tR
t0

jf(t; s)j2dsdt <1 a.s.;

| xt0 = x0 a.s.;
| the equation (1.1) holds for each t 2 [t0; T ].
There is a number of papers in which various, essentially diferent suÆcient

conditions of the existence and uniqueness of a solution of the equation (1.1) are
considered (see, [2], [8], [16], [17], for example). In fact, in [2], following the
classical theory of stochastic di�erential equations of the Itô type (see, [4], [5],
[12], [13], for example), the basic existence and uniqueness theorem is proved: If
the functions ai; bi; i = 1; 2; 3, satisfy the global Lipschitz condition and the usual
linear growth condition on the last argument, i.e. if there exists a constant L > 0
such that

(1.2) ja2(t; s; x)� a2(t; s; y)j < Ljx� yj; ja2(t; s; x)j � L (1 + jxj) ;

for all (t; s) 2 J , x; y 2 Rn, and similarly for the other functions, and if Ejx0j
2 <

1, then there exists a unique a.s. continuous strong solution xt; t 2 [t0; T ], of
the equation (1.1), satisfying Efsupt2[t0;T ] jxtj

2g < 1. Moreover, following the

procedure in [13] and [15] completely, it can be proved that if Ejx0j
2m < 1 for

any �xed number m 2 N , then Efsupt2[t0;T ] jxtj
2mg <1.

As we saw above, our main purpose in this paper is to study the stochastic
integro-di�erential equation (1.1) with \small" perturbations, by comparing its
solution with the solution of the corresponding unperturbed equation of the equal
type. More precisely, we shall give conditions ensuring the closeness in (2m)-th
moment sense for these solutions on �xed �nite intervals or on intervals whose
length goes to in�nity. Note that the form of perturations is motivated by the one



CONVERGENCE IN (2M)-TH MEAN FOR PERTURBED STOCHASTIC... 135

from [7] and, also, from the basic paper [19], but the treatment used in our analysis
is completely di�erent from the one used in the mentioned papers. Moreover, we
generalize the results of [19] which could be treated here as illustrative examples.
Remember, also, that the problems treating stochastic perturbed equations have
been studied by several authors in the past years, in the papers and books [9], [10],
[11], [14], [18], [20], for example.

In the sequel we shall apply the following version of the Gronwall{Bellman
inequality [1, p. 12]: Let u(t) be a continuous function in [t0; T ], b(t) a nonnegative
continuous function in [t0; T ], k(t; s) a nonnegative continuous function for t0 �
s � t � T and

(1.3) u(t) � a(t) + b(t)

Z t

t0

k(t; s)u(s) ds; t 2 [t0; T ]:

Then

u(t) � A(t)e
B(t)

R
t

t0
K(t;s) ds

; t 2 [t0; T ];

where A(t) = sup
s2[t0;t]

a(s), B(t) = sups2[t0;t] b(s), K(t; s) = supr2[s;t] k(r; s).

2. Main results

Along with the equation (1.1) in integral form, i.e.

xt = x0 +

Z t

t0

�
a1(s; xs) +

sZ
t0

a2(s; r; xr) dr +

sZ
t0

a3(s; r; xr) dwr

�
ds

+

Z t

t0

�
b1(s; xs) +

sZ
t0

b2(s; r; xr) dr +

sZ
t0

b3(s; r; xr) dwr

�
dws;(2.1)

we estabilish the following equation

x"t = x"0 +

Z t

t0

�
~a1(s; x

"
s; ") +

sZ
t0

~a2(s; r; x
"
r ; ") dr +

sZ
t0

~a3(s; r; x
"
r; ") dwr

�
ds

+

Z t

t0

�
~b1(s; x

"
s; ") +

sZ
t0

~b2(s; r; x
"
r; ") dr +

sZ
t0

~b3(s; r; x
"
r ; ") dwr

�
dws;(2.2)

where t 2 [t0; T ], " is a small parameter from the interval (0; 1), the initial condition

x"0 and the functions ~ai, ~bi, i = 1; 2; 3 are de�ned as for the equation (1.1), and w

is the same Brownian motion.
Inspired by [19], we suppose that there exist the nonrandom functions �i(�),

�i(�), i = 1; 2; 3, de�ned as ai, bi, i = 1; 2; 3, respectively, and depending on the
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small parameter ", such that for (t; s) 2 J , x 2 Rn

~a1(t; x; ") = a1(t; x) + �1(t; x; ");

~b1(t; x; ") = b1(t; x) + �1(t; x; ");

~ai(t; s; x; ") = ai(t; s; x) + �i(t; s; x; "); i = 2; 3;

~bi(t; s; x; ") = bi(t; s; x) + �i(t; s; x; "); i = 2; 3:

The terms �i and �i are called the perturbations of the coeÆcients ai and bi, respec-
tively. Because of that, the equation (2.2) is naturaly called the perturbed equation,
while the name the unperturbed equation is kept for (2.1). Likewise, we introduce
the following necessary assumptions:

Let there exist a natural number m, the nonrandom value Æ0(") and the one-
dimensional nonnegative bounded functions Æi(�), 
i(�), i = 1; 2; 3, de�ned on J and
depending on ", such that

(2.3) Ejx0j
2m <1; Ejx"0j

2m <1; Ejx0 � x"0j
2m � Æ0(");

sup
x2Rn

j�1(t; x; ")j � Æ1(t; "); sup
x2Rn

j�1(t; x; ")j � 
1(t; ");(2.4)

sup
x2Rn

j�i(t; s; x; ")j � Æi(t; s; "); sup
x2Rn

j�i(t; s; x; ")j � 
i(t; s; "); i = 2; 3:

In view of our previous discussion, if we suppose that they are small for small
", then we can impose conditions under which the solution x" and x are close in
(2m)-th moment sense.

In the sequel we suppose without emphasizing that the all random and nonran-
dom integrals employed further are well de�ned, as well as that �a priori there exist
the unique solutions of the equations (2.1) and (2.2), satisfying Efsupt2[t0;T ] jxtj

2mg

<1 and Efsupt2[t0;T ] jx
"
t j
2mg <1 (under the general conditions of the existence

and uniqueness theorem from [2], for example). Furthermore, we shall emphasize
only the conditions immediately used in our consideration.

First we give the following global estimation for the (2m)-th moment closeness
of the solutions x and x", which is important for the statements in our main results.

Proposition 2.1. Let xt and x"t be the solutions of the equations (2:1) and
(2:2) respectively and let the conditions (1:2), (2:3) and (2:4) be satis�ed on the

�nite interval [t0; T ]. Then

(2.5) Ejx"t � xtj
2m � a(t; ") e�(t�t0); t 2 [t0; T ];

where
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a(t; ") = AÆ0(") +A(t� t0)
m�1

�Z t

t0

h
(t� t0)

mÆ2m1 (s; ") +B
2m1 (s; ")
i
ds

+

Z t

t0

(s� t0)
2m�1

Z s

t0

h
(t� t0)

mÆ2m2 (s; ") +B
2m2 (s; ")
i
dr ds(2.6)

+ B

Z t

t0

(s� t0)
m�1

Z s

t0

h
(t� t0)

mÆ2m3 (s; ") +B
2m3 (s; ")
i
dr ds

�
;

�(t) = AL2m tm
�

t3m

2m+ 1
+

B(3m+ 2) t2m

(m+ 1)(2m+ 1)
+
�
1 +

B2

m+ 1

�
tm +B

�
;(2.7)

and A = 132m�1; B = [m(2m� 1)]m; L is the Lipschitz constant from (1:2).

Proof. Denote
z"t = x"t � xt; �"

t = Ejz"t j
2m:

By subtracting the equations (2.1) and (2.2) and by applying the elementary in-

equality
�Pn

i=1 ai

�s
� ns�1

Pn
i=1 a

s
i , ai � 0, s 2 N , we obtain, for every t 2 [t0; T ],

Ejz"t j
2m � 132m�1

�
Ejz"t0 j

2m +E
�Z t

t0

[a1(s; x
"
s)� a1(s; xs)] ds

�2m

+E
�Z t

t0

�1(s; x
"
s; ") ds

�2m

+E
�Z t

t0

Z s

t0

[a2(s; r; x
"
r)� a2(s; r; xr)] dr ds

�2m

+E
�Z t

t0

Z s

t0

�2(s; r; x
"
r; ") dr ds

�2m

+E
�Z t

t0

Z s

t0

[a3(s; r; x
"
r)� a3(s; r; xr)] dwr ds

�2m

+E
�Z t

t0

Z s

t0

�3(s; r; x
"
r; ") dwr ds

�2m

+E
�Z t

t0

[b1(s; x
"
s)� b1(s; xs)] dws

�2m

+E
�Z t

t0

�1(s; x
"
s; ") dws

�2m

+E
�Z t

t0

Z s

t0

[b2(s; r; x
"
r)� b2(s; r; xr)] dr dws

�2m

+E
�Z t

t0

Z s

t0

�2(s; r; x
"
r; ") dr dws

�2m
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+E
�Z t

t0

Z s

t0

[b3(s; r; x
"
r)� b3(s; r; xr)] dwr dws

�2m

+ E
�Z t

t0

Z s

t0

�3(s; r; x
"
r ; ") dwr dws

�2m�
:

In order to estimate these integrals, we shall apply the usual stochastic integral
isometry: the Lipschitz condition (1.2) for the functions ai; bi, the relations (2.3)
and (2.4), the partial integration, H�older inequality for p = 2m, 1

p +
1
q = 1 and the

well{known integral formula for Itô integrals (see [5], [12], [13]):

E
�Z t

t0

f(s) dws

�2m
� [m(2m� 1)]m(t� t0)

m�1

Z t

t0

Ef2m(s) ds

for any measurable Ft{adapted process f(t) satisfying
R t
t0
Ef2m(s) ds < 1. Con-

sequently, taking B = [m(2m� 1)]m we �nd

E
�Z t

t0

[a1(s; x
"
s)� a1(s; xs)] ds

�2m

� (t� t0)
2m�1

Z t

t0

Eja1(s; x
"
s)� a1(s; xs)j

2m ds

� L2m(t� t0)
2m�1

Z t

t0

�"
s ds;

E
�Z t

t0

�1(s; x
"
s; ") ds

�2m
� (t� t0)

2m�1

Z t

t0

Æ2m1 (s; ") ds;

E
�Z t

t0

Z s

t0

[a2(s; r; x
"
r)� a2(s; r; xr)] dr ds

�2m

� L2m(t� t0)
2m�1

Z t

t0

(s� t0)
2m�1

Z s

t0

�"
r dr ds

=
L2m

2m
(t� t0)

2m�1

Z t

t0

�
(t� t0)

2m � (s� t0)
2m
�
�"
s ds;

E
�Z t

t0

Z s

t0

[�2(s; r; x
"
r; ") dr ds

�2m

� (t� t0)
2m�1

Z t

t0

(s� t0)
2m�1

Z s

t0

Æ2m2 (s; r; ") dr ds

E
�Z t

t0

Z s

t0

[a3(s; r; x
"
r)� a3(s; r; xr)] dwr ds

�2m

� BL2m(t� t0)
2m�1

Z t

t0

(s� t0)
m�1

Z s

t0

�"
r dr ds

=
BL2m

m
(t� t0)

2m�1

Z t

t0

�
(t� t0)

m � (s� t0)
m
�
�"
s ds;
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E
�Z t

t0

Z s

t0

[�3(s; r; x
"
r; ") dwr ds

�2m

� B(t� t0)
2m�1

Z t

t0

(s� t0)
m�1

Z s

t0

Æ2m3 (s; r; ") dr ds

E
�Z t

t0

[b1(s; x
"
s)� b1(s; xs)] dws

�2m
� BL2m(t� t0)

m�1

Z t

t0

�"
s ds;

E
�Z t

t0

�1(s; x
"
s; ") dws

�2m
� B(t� t0)

m�1

Z t

t0


2m1 (s; ") ds;

E
�Z t

t0

Z s

t0

[b2(s; r; x
"
r)� b2(s; r; xr)] dr dws

�2m

�
BL2m

2m
(t� t0)

m�1

Z t

t0

�
(t� t0)

2m � (s� t0)
2m
�
�"
s ds;

E
�Z t

t0

Z s

t0

[�2(s; r; x
"
r; ") dr dws

�2m

� B(t� t0)
m�1

Z t

t0

(s� t0)
2m�1

Z s

t0


2m2 (s; r; ") dr ds;

E
�Z t

t0

Z s

t0

[b3(s; r; x
"
r)� b3(s; r; xr)] dwr dws

�2m

�
B2L2m

m
(t� t0)

m�1

Z t

t0

�
(t� t0)

m � (s� t0)
m
�
�"
s ds;

E
�Z t

t0

Z s

t0

[�3(s; r; x
"
r; ") dwr dws

�2m

� B2(t� t0)
m�1

Z t

t0

(s� t0)
m�1

Z s

t0


2m3 (s; r; ") dr ds:

Finally, we come to the integral inequality of the type (1.3),

(2.8) �"
t � a(t; ") + b(t)

Z t

t0

k(t; s)�"
s ds; t 2 [t0; T ];

where

a(t; ") = AÆ0(") +A(t� t0)
m�1

�Z t

t0

h
(t� t0)

mÆ2m1 (s; ") +B
2m1 (s; ")
i
ds

+

Z t

t0

(s� t0)
2m�1

Z s

t0

h
(t� t0)

mÆ2m2 (s; ") +B
2m2 (s; ")
i
dr ds

+ B

Z t

t0

(s� t0)
m�1

Z s

t0

h
(t� t0)

mÆ2m3 (s; ") +B
2m3 (s; ")
i
dr ds

�
;
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b(t) = AL2m(t� t0)
m�1[B + (t� t0)

m];

k(t; s) = 1 +
1

2m
[(t� t0)

2m � (s� t0)
2m] +

B

m
[(t� t0)

m � (s� t0)
m];

and A = 132m�1. Since the functions a(t; ") and b(t) are increasing, k(t; s) is
increasing with respect to the �rst argument and

Z t

t0

k(t; s) ds = (t� t0)
h
1 +

1

2m+ 1
(t� t0)

2m +
B

m+ 1
(t� t0)

m
i
;

we easily come to the estimation (2.5) by applying the previous cited version of
Gronwall{Bellman inequality to the inequality (2.8). �

If we start from the global estimation (2.5), taking into consideration that
the size of the perturbations is limited by Æ0(�), Æi(�), 
i(�) and if we require that
Æ0(�)! 0, Æi(�)! 0, 
i(�)! 0 as "! 0, it is reasonable to expect that, under some
conditions, supt2[t0;T ]Ejx

"
t � xtj

2m ! 0 as "! 0.

Theorem 2.1. Let the conditions of Proposition 2:1 be satis�ed and let Æ0(�),
Æi(�), 
i(�), i = 1; 2; 3; tend to zero as " tends to zero, for every (t; s) 2 J . Then

sup
t2[t0;T ]

Ejx"t � xtj
2m ! 0 as "! 0:

Proof. Denote

(2.9)

Æ1(") = sup
t2[t0;T ]

Æ1(t; "); Æi(") = sup
(t;s)2J

Æi(t; s; "); i = 2; 3


1(") = sup
t2[t0;T ]


1(t; "); 
i(") = sup
(t;s)2J


i(t; s; "); i = 2; 3:

and

(2.10) �(") = max
n
Æ0("); Æ

2m

1 ("); Æ
2m

2 ("); Æ
2m

3 ("); 
2m1 ("); 
2m2 ("); 
2m3 (")
o
:

Clearly, �(")! 0 as "! 0. From (2.6) we �nd

a(t; ") � �(")P4((t� t0)
m); t 2 [t0; T ];

where P4(v), v � 0, is the corresponding polynomial of the degree 4. Now, from
(2.5) it follows

(2.11) Ejx"t � xtj
2m � �(")P4((t� t0)

m) e�(t�t0); t 2 [t0; T ];

where �(t� t0) is de�ned as in (2.7). Because T is �nite, then there exists a generic
constant C > 0, not depending on ", such that

Ejx"t � xtj
2m � C �("); t 2 [t0; T ]:
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Therefore, supt2[t0;T ]Ejx
"
t � xtj

2m ! 0 as "! 0. �

Remark 1. The initial condition x"0 and the perturbations �i(�), �i(�), i = 1; 2; 3,
in the perturbed equation (2.2) could depend on di�erent small parameters "0, "i,
�i, i = 1; 2; 3, respectively. Because the solution depends on them, we adopt the
shorter notational convenion, introducing the superscript " in x"t and emphasizing
that " also depends on them. Clearly, the functions Æ0(�), Æi(�), 
i(�), i = 1; 2; 3,
from (2.3) and (2.4) also depend on them. If they are nondecreasing with respect
to the small parameters, then Proposition 2.1 and Theorem 2.1 are valid with
" = maxf"0; "1; "2; "3; �1; �2; �3g.

Note that all the previous considerations refer to any �xed �nite time-interval.
The logical question is: Are the analogous conclusions valid for the in�nite time-
interval? The following theorem, as the main result of this paper, shows that
suptEjx

"
t �xtj

2m ! 0 as "! 0 on intervals whose length goes to in�nity. Likewise,
note that the proof is partially similar to the appropriate proof in [7].

Theorem 2.2. Let the conditions of Theorem 2:1 be satis�ed for t � t0. Then,

for an arbitrary number r 2 (0; 1) and " suÆciently small, there exists a number

T (") > 0, where

(2.12) T (") =M
h�
� r ln�(")

�1=4
�K

i1=m
;

�(") is given by (2:10), M and K are some generic positive constants, such that

sup
t2[t0;t0+T (")]

Ejx"t � xtj
2m ! 0 as "! 0:

Proof. Since the time-interval is in�nite, Theorem 2.1 is generally not valid.
Because of that we shall take T = t0 + T (") and e�ectively determine T (") such
that supt2[t0;T (")]Ejx

"
t � xtj

2m ! 0 as "! 0.

From (2.11) it follows

(2.13) Ejx"t � xtj
2m � �(")P4

�
Tm(")

�
e�(T (")); t 2 [t0; T (")]:

Since " ! 0 implies �(") ! 0, we can accept that there exists a constant "0,
0 < "0 < 1, such that �(") < 1 for " 2 (0; "0). Because we require that the limit
on the right side of the inequality (2.13) tends to zero as " tends to zero, we shall
determine T (") such that

�(T (")) � �r ln�(")

for an arbitrary number r 2 (0; 1) and for " 2 (0; "0).

By applying the elementary inequality a41+4a31a2+6a21a
2
3+4a1a

3
4 �

�P4
i=1 ai

�4
,

ai � 0, to the function �(t� t0) de�ned by (2.7), taking

a1 =
� AL2m

2m+ 1

�1=4
(t� t0)

m; a2 =
B (3m+ 2)

4 (m+ 1)
�
� AL2m

2m+ 1

�1=4
;

a3 =
�
AL2m(2m+ 1)

�1=4
�
h1
6

�
1 +

B2

m+ 1

�i1=2
;

a4 =
�B
4

�1=3
� (2m+ 1)1=12 � (AL2m)1=4;
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we obtain

�(t� t0) � �(T (")) �

�� AL2m

2m+ 1

�1=4
Tm(") +K

�4
; t 2 [t0; T (")];

where K = a2+ a3+ a4. Now, for an arbitrary number r 2 (0; 1) and " suÆciently
small (" < "0), such that �r ln�(") � K4, providing

�� AL2m

2m+ 1

�1=4
Tm(") +K

�4
= �r ln�(");

we easily �nd the maximal number T (") in the form (2.12), whereM =
�
2m+1
AL2m

�1=4m
.

Clearly, T (")!1 as "! 0.
Finally, from (2.12), for every t 2 [t0; T (")], it follows

Ejx"t � xtj
2m �

�
�(")

�1�r
P4

�
M

h�
� r ln�(")

�1=4
�K

i1=m�
! 0 as "! 0;

and, therefore, supt2[t0;t0+T (")]Ejx
"
t � xtj

2m ! 0 as " ! 0. Thus the proof is
complete. �

Example.. Let us indicate brie
y how to apply the foregoing results to esti-
mate the (2m)-th mean closeness for the solutions of any perturbed equation and
the corresponding unperturbed equation. For example, motivated by the choice of
perturbations in [19], let us consider the scalar perturbed equation

x"t = � + "0 +

Z t

0

�
as + bs x

"
s +

"1

1 + jx"sj
+

Z s

0

�
"3 + e�(r+1)="3

�
sinx"r dwr

�
ds

+

Z t

0

�
cs + �1 +

Z s

0

sin
�3

1 + s+ r + jx"rj
dwr

�
dws; t � 0;

where at; bt; ct; t � 0, are nonrandom, measurable and bounded functions and
� = const > 0 a.s., while

xt = � +

Z t

0

(as + bs x
"
s) ds+

Z t

0

cs dws; t � 0;

is the corresponding unperturbed linear equation, which is e�ectively solvable and
which solution is the gaussian and markovian process (see [4], [6], [13], for example).
Note that the perturbations from the perturbed equation satisfy the conditions
(2.1), (2.3) and (2.4). The conditions of Theorem 2.1 and of Theorem 2.2 are also
satis�ed and, therefore, we can determine intervals [0; T (")] whose length tends to
in�nity as "! 0 and on which supt2[0;T (")]Ejx

"
t � xtj

2m ! 0 as "! 0. From (2.9)

and (2.10) it follows

�(") = max

�
"2m;

�
"+ e�1="

�2m
; (sin ")2m

�
=
�
"+ e�1="

�2m
:
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Since there exists "0 2 (0; 1), such that " + e�1=" < 1 for all " 2 (0; "0), then, for
an arbitrary number r 2 (0; 1), from (2.12) we observe

T (") =M

��
�2mr ln

�
"+ e�1="

��1=4
�K

�1=m
;

where the constants M and K are de�ned as above and A = 62m�1.

Remark 2.. By applying the previously used stochastic integral isometry, in-
cluding the Burkholder{Davis{Gundy inequality (see [5], [13], [15], for example)

one can estimate �
"
(T ) = Efsupt2[t0;T ] jx

"
t � xtj

2mg as a measure of the closeness
between the solutions xe and x. Analogously to the procedure exposed in this pa-
per, one can �nd conditions under which �

"
(T )! 0 as "! 0 on �nite intervals or

on intervals whose length goes to in�nity.

Remark 3.. If the time interval is in�nite, the results of this paper could be
immediately used to investigate the asymptotic stability in (2m)-th moment sense
for the solutions of the perturbed equations, by studying the same asymptotic
stability for the solution of the corresponding unperturbed equation.
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Math. J. 34 (1986), 23{33.

[17] M.G. Murge, B.G. Pachpatte, Sucessive approximations for solutions of second order stochas-
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