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Abstract. Let fm(n) and hm(n) denote the number of 2-factors and the number of
connected 2-factors (Hamiltonian cycles) respectively in a (m�1)�(n�1) grid i.e. in the labelled
graph Pm�Pn. We show that for each �xed m (m > 1) the sequences fm = (fm(2); fm(3); : : :)
and hm = (hm(2); hm(3); : : :) satisfy di�erence equations (linear, homogeneous, and with con-
stant coeÆcients). Furthermore, a computational method is given for �nding these di�erence
equations together with the initial terms of the sequence. The generating functions of fm and
hm are rational functions Fm and Hm respectively, and they are given explicitly for some
values of m.

1. Introduction. There are exactly three 2-factors (spanning 2-regular
subgraphs) of P3�P4 as shown in Fig. 1. Note that two of them are Hamiltonian
cycles (connected 2-factors).
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Fig. 1

The approach taken here is to �x m and then �nd a way to calculate the
sequences fm = (fm(2); fm(3); : : :) and hm = (hm(2); hm(3); : : :). Using the so-
called transfer matrix method [5] it will be shown that the sequences fm and hm
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satisfy di�erence equations (linear, homogeneous, and with constant coeÆcients)
i.e. their generating functions

Fm(x) =

1X
n=0

fm(n)x
n and Hm(x) =

1X
n=0

hm(n)x
n

(we can take fm(0) = fm(1) = hm(0) = hm(1) = 0) represent rational functions,
say Fm(x) = Pm(x)=Qm(x) with Pm;Qm relatively prime polynomials with
integer coeÆcients and Hm(x) = Rm(x)=Sm(x) with Rm;Sm relatively prime
polynomials with integer coeÆcients too and Qm(0) = Sm(0) = 1: Algorithms are
given for calculating these polynomials and the rational functions Fm(x) are given
for m = 2; : : : ; 7 and the functions Hm(x) for m = 2; : : : ; 6: This makes it easy
to calculate fm(n) and hm(n) for these values of m, and a few tables are given.

Mathematical considerations

In the labelled graph Pm�Pn (cartesian product of two paths with m and
n vertices, respectively), there are (m� 1)� (n� 1) cycles of order 4 (squares),
called windows (since they look like the windows in an m� n window frame).

With the graph Pm � Pn we can associate its window lattice graph Wm;n

whose vertices are the windows of Pm�Pn (Fig. 2), two vertices being adjacent in
Wm;n i� the two windows of Pm � Pn which correspond to those vertices have a
common edge. We denote by wi;j (i = 1; : : : ;m� 1; j = 1; : : : ; n� 1) vertices of
Wm;n as shown in Fig. 2. Obviously, the window lattice graph Wm;n associated
with Pm � Pn is isomorphic to the graph Pm�1 � Pn�1:

It is easy to prove the following statement:

Pm � Pn (m;n > 1) has a 2-factor (Hamiltonian cycle) i� the number of
vertices is even.

We associate with each 2-factor of Pm � Pn (m > 2) a binary matrix
A = [ai;j ](m�1)�(n�1) de�ning its elements in the following way (Fig. 4):

ai;j =

8<
:

1; if wi;j belongs to interiors of an odd number
of cycles of that 2-factor;

0; otherwise.

This matrix satis�es the following necessary conditions which are easy to
verify:

� Adjacency of Column Conditions:
(8j)(1 � j � n� 2)

:(a1;j = a1;j+1 = 0 _ am�1;j = am�1;j+1 = 0) (1)



On the number of 2-factors in rectangular lattice graphs 25

(8i)(1 � i � m� 2)(8j)(1 � j � n� 2)

(ai;j ; ai+1;j ; ai;j+1; ai+1;j+1) 62 (2)

f(0; 0; 0; 0); (1; 1; 1; 1); (1; 0; 0; 1); (0; 1; 1; 0)g (3)

� First and Last Column Conditions:

a1;1 = am�1;1 = a1;n�1 = am�1;n�1 = 1 (4)

(8i)(1 � i � m� 2)

:(ai;1 = ai+1;1 = 0 _ ai;n�1 = ai+1;n�1 = 0) (5)
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Fig. 2 The labelled graph Pm � Pn (thin lines) associated with the labelled graph
Wm;n (thick lines).

Condition (1) says that the �rst and the last rows do not have two adjacent
0's; the condition (5) says the same things for columns; the condition (4) says that
the corners are 1's; and the condition (2) says that 2 by 2 submatrices given in
Fig. 3 are forbidden.
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Fig. 3
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If the 2-factor is connected as well, then the window lattice graph Wm;n of
this matrix satis�es the following condition too:

� Root Condition: Each connected component outside a Hamiltonian cycle has a
tree structure (we call it exterior tree (ET)) with one square wi;j (we call it root of
the exterior tree) on the edge of the rectangle but not at a corner i.e.

(i 2 f1; (m� 1)g ^ j 62 f1; (n� 1)g) _ (j 2 f1; (n� 1)g ^ i 62 f1; (m� 1)g) (6)

The converse is also satis�ed: every binary matrix A = [ai;j ](m�1)�(n�1)
which satis�es adjacency of column conditions and �rst and last column conditions,
determines exactly one 2-factor of the graph Pm�Pn; every such matrix A which
satis�es root condition as well determines a connected 2-factor.

Using these conditions some new values of hm(n) were obtained in [3], but,
that algorithm is very slow because it generates each binary matrix which ful�lls
(1){(4) and the root condition, one by one.

Enumeration of 2-factors. Let A be an arbitrary binary matrix A =
[ai;j ](m�1)�(n�1) which satis�es adjacency of column conditions and �rst and last
column conditions We create for each number m (m > 2) a graph Gm in the
following way: the set of vertices V (Gm) consists of all possible columns in the
matrix A (note that it is not the set of all binary words in f0; 1gm�1); a line joins
a vertex v to a vertex u (u; v 2 V (Gm)) i� the vertex v (as a binary word)
might be previous column for the vertex u (as a binary word).

The subset of vertices which consists of all possible �rst (last) columns in the
matrix A is called the set of the emphasized vertices.

So, in this way, the problem of the enumeration of all 2-factors in Pm � Pn

is reduced to the enumeration of all walks of the length (n� 2) in the graph Gm

with emphasized initial and �nal vertices.

Enumeration of Hamiltonian cycles. The values of h4(n) and h5(n)
were studied in [1] and [2]. In [4] a recurrence relation is given for the sequences
h6 using a new characterization of the Hamiltonian cycles in Pm �Pn. It enables
us to determine a special digraph Dm for each number m. In this way, the
enumeration of all connected 2-factors in Pm � Pn is reduced to enumeration of
all oriented walks of the length (n� 2) in the digraph Dm with the initial and
�nal vertices in the special sets. In [4], the following de�nition was introduced:

De�nition 1. Two windows wi;l and wj;s which satisfy: ai;l = 0; aj;s = 0
and l; s � k are said to be Surely In the Same Exterior Tree at the k-th level
(i.e. in relation k-SISET) i� they belong to the same component in the subgraph
of Wm;n which is induced by set of all windows wp;t which satisfy ap;t = 0 and
t � k.
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The relation k-SISET represents a RST-relation in the set of all windows
wi;k which satisfy ai;k = 0 (1 � i � m � 1) for a �xed k. There are at most
d(m � 1)=2e classes of the RST-relation. (It is possible that two di�erent classes
belong to the same ET but we can't conclude that if we know only the �rst k
column of the matrix A.) Further, every class belongs to exactly one ET, so it
can be in relation k-SISET with at most one root.

Let C denote the set f2; 3; : : : ; d(m � 1)=2eg: Now, for each Hamiltonian
cycle, we associate with binary matrix A = [ai;j ](m�1)�(n�1) which satys�es
adjacency of column conditions, the �rst and last column conditions and the root
condition, the matrix B = [bi;j ](m�1)�(n�1); bi;j 2 C [ f0; 1g in the following
way (Fig. 5):

(a) bi;j = 1 i� ai;j = 1 (1 � i � (m� 1)) (1 � j � (n� 1));

(b) if the window wi;j is the root of an ET and (i = 1 or i = (m � 1) or
j = 1) then bi;j = 0;

(c) if the window wi;j isn't a root of an ET but it is in relation j-SISET with
a root then bi;j = 0;

(d) we associate with the remaining windows some elements of C considering the
ordinal numbers of remaining classes in the �xed j-th column. (Till now, we
associated 0's with some classes in the �xed column ((b) and (c)). Thus, the
�rst of the remaining classes in the �xed column (from above) is associated
with number 2; the second one with number 3; etc.

1 1 1 1 1 1 1 1 0 1 1 0 1 1

0 0 1 0 0 0 0 0 0 1 0 0 1 0

1 1 1 1 1 0 1 1 1 1 1 0 1 1

1 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 1 0 1 1 1 1 1 0 1 1 1 1

1 1 1 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 1 1 1 1 1 1 1 0 1 1

1 1 1 0 0 0 0 0 0 0 1 0 1 0

0 0 1 1 1 1 1 1 1 1 1 0 1 1

1 0 1 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 4
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1 1 1 1 1 1 1 1 0 1 1 0 1 1

0 0 1 2 2 2 2 2 0 1 2 0 1 2

1 1 1 1 1 2 1 1 1 1 1 0 1 1

1 2 2 3 3 2 2 2 1 2 3 0 1 3

1 2 1 3 1 1 1 1 1 2 1 1 1 1

1 1 1 3 1 3 3 3 2 2 3 0 1 4

1 3 3 3 1 1 1 1 1 1 1 0 1 1

1 1 1 3 3 2 2 2 0 0 1 0 1 5

0 0 1 1 1 1 1 1 1 1 1 0 1 1

1 0 1 4 4 4 4 4 3 3 4 0 1 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 5

We need a few additional de�nitions:

De�nition 2. The base of the integer word d1d2 : : : dm�1 is the binary
word �d1 �d2 : : : �dm�1 where

�di =

�
1; if di = 1
0; otherwise

De�nition 3. The base of the integer matrix [di;j ] is the binary matrix
[ �di;j ] of the same format where

�di;j =

�
1; if di;j = 1
0; otherwise

De�nition 4. A subword u of v such that all letters of u are equal b is
said to be a b-subword of v. A b-subword u of v is a maximal b-subword of v if
u is not a proper subword of any b-subword of v.

From the de�nition of the matrix B = [bi;j ](m�1)�(n�1), we can easily obtain
the following properties of that matrix:

1. The base of the matrix B i.e. matrix A = [ai;j ](m�1)�(n�1) satis�es adja-
cency of column conditions ((1) and (2)) and �rst and last column conditions
((4) and (5)).

2. The �rst column is equal to its base i.e.

(8i)(1 � i � m� 1)(bi;1 = ai;1)

3. The last, (n� 1)-th column doesn't contain any 0s, and if the number p of
all 1's is less than (m� 1); then the word obtained from (n� 1)-th column
by removing all 1's is the word 23 : : : (m� p):



On the number of 2-factors in rectangular lattice graphs 29

4. For every k-th column (2 � k � n� 1) of the matrix B it is satis�ed:

(a) b1;k = a1;k; bm�1;k = am�1;k:

(b) If bi;k 6= 1 (2 � i � m � 2) then bi�1;k 2 fbi;k; 1g and bi+1;k 2
fbi;k; 1g: (Two windows belonging to the same class must be associated
with the same number.)

(c) If bi;k�1 = 0 (2 � i � m � 2) then bi;k 2 f0; 1g: (If the window
wi;k�1 is in relation (k� 1)-SISET with a root (i.e. bi;k�1 = 0) then
it is in relation k-SISET with the same root, as well; and if it is in
relation k-SISET with wi;k (i.e. ai;k = 0) then wi;k must be in relation
k-SISET with the same root.)

(d) For each number b 2 C which appears in the (k� 1)-th column there
must be a window wi;k�1 with bi;k�1 = b and bi;k 6= 1: (There are
no ET without root.)

(e) For each p and l such that p 6= l; 2 � p; l � m � 1, where
bp;k�1 = bl;k�1 6= 1 and ap;k = al;k = 0 we have bp;k = bl;k: (If
wp;k�1 and wl;k�1 are in relation (k�1)-SISET and ap;k = al;k = 0
then the windows wp;k and wl;k must be in relation k-SISET.)

(f) If bi;k�1 = bj;k�1 2 C and bi;k = bj;k = b 6= 1 (i 6= j, 2 � i; j �
m�2) then there is no sequence of consecutive appearances of number
b 2 C [ f0g (i.e. b-subword ) in the k-th column which contains both
wi;k and wj;k: (In the opposite case, we would get a cycle in a ET.)

(g) For every maximal 0-subword v in the k-th column, exactly one of
the following two conditions are ful�lled:

I v is adjacent to exactly one 0-window from the (k� 1)-th column
or contains exactly one of the elements w1;k and wm�1;k (Fig. 6a).

II There is exactly one sequence v = v1; v2; : : : ; vp (p � 1) of di�erent
maximal 0-subwords in the same column satisfying the following
condition:

for every i (1 � i � (p � 1)), there is exactly one wji;k�1

with bji;k�1 2 C for which wji;k 2 vi, and there is exactly
one wsi+1;k�1 with bsi+1;k�1 2 C for which wsi+1;k 2 vi+1
and bji;k�1 = bsi+1;k�1;

the p-th sequence vp is either adjacent with exactly one 0-th
window from the (k � 1)-th column or contains exactly one of
the windows w1;k and wm�1;k (Fig. 6b).

(h) If v and u are two di�erent maximal b-subwords b 2 C in the
k-th column (i.e. if we can conclude by knowing the �rst k columns
that v and u are in the same ET), then there is exactly one sequence
v = v1; v2; : : : ; vp = u of p (p > 1) di�erent maximal b-subwords in
the k-th column which satis�es: for every i (1 � i � p� 1) there is
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exactly one wji;k�1 with bji;k�1 2 C for which wji;k 2 vi and there
is exactly one wsi+1;k�1 with bsi+1;k�1 2 C for which wsi+1;k 2 vi+1
and bji;k�1 = bsi+1;k�1 (Fig. 7).

(i) Consider the windows with the �rst appearances of elements from the
set C in the k-th column from above (from w1;k to wm�1;k). Let
them be wp1;k; wp2;k; : : : ; wpl;k (l < d(m�1)=2e). Then, bpi;k = i+1:
(This follows from de�nition of matrix B) .

Conversely, it can be easily proved that every matrix B = [bi;j ](m�1)�(n�1)
with elements from the set C [ f0; 1g which satis�es 1{4 determines exactly
one Hamiltonian cycle in the graph Pm � Pn i.e. the base of the matrix
B = [bi;j ](m�1)�(n�1) ful�lls the root condition and also the adjacency of column
conditions and the �rst and last column conditions.
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Now, we can create for each number m (m � 3) a digraph Dm in the
following way: the set of vertices V (Dm) consists of all possible columns in the
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matrix B (integer words d1d2 : : : dm�1 of the alphabet C [f0; 1g); a (directed)
line joins the vertex v with the vertex u (v; u 2 V (Dm)) i.e. v ! u i� the
vertex v (as an integer word b1;k�1b2;k�1 : : : bm�1;k�1) might be the previous
column for the vertex u (as a word b1;kb2;k : : : bm�1;k) i.e. these words satisfy
conditions 1 and 4.

The subset of V (Dm) which consists of all possible �rst columns in the
matrix B (conditions 1 and 2) will be called the set of the emphasized vertices.
The subset of V (Dm) which consists of all possible last columns in the matrix B
(conditions 1 and 3) will be called the set of the last vertices. Note that these two
subsets of V (Dm) have exactly one element in common (the word 11 : : : 1). So,
in this way, our problem of enumeration of all Hamiltonian cycles in Pm � Pn is
reduced to enumeration of all oriented walks of the length (n� 2) in the digraph
Dm with the emphasized initial vertices and the last �nal vertices. For every m
(m � 3) we can create a digraph Dm using the properties of the matrix B.

Now, we continue these considerations in order to obtain better results than
the ones in [4]. It follows from these considerations, in both cases, that there is a
one-to-one correspondence between (oriented) walks of length (n�2) which begin
at the emphasized vertices and end at the (last) emphasized vertices in (Dm) Gm.

Now we use a well-known result from graph theory. Namely, the number of
walks of lenght (n � 2) from vertex i to vertex j in a directed graph with
vertex set f1; : : : ; hg is the (i; j)-entry in Mn

m, where Mm = [Mij ]h�h is
the incidence matrix of the (di)graph (Dm) Gm: It is a simple consequence of
the Cayley-Hamilton Theorem that (hm) fm satis�es a di�erence equation. In
fact, from the coeÆcients of the characteristic polynomial of Mm we obtain the
coeÆcients for a di�erence equation satis�ed by (hm) fm.

Let c0; c1; : : : ; cp denote the coeÆcients of the di�erence equation satis�ed
by (hm) fm with c0 = 1. Thus,

pX
i=0

cifm(n� i) = 0 (n � p):

Computational results

On the base of previous considerations we wrote computer programs for compu-
tation of the incidence relations and matrices Mm, incidence matrices of the
(di)graph (Dm) Gm. Generation of the vertices (as (integer) binary words of the
lenght (m� 1) begins from emphasized vertices.

We used the symmetry of some couples of words from sets V (Gm) (V (Dm))
in order to simplify computations, by reducing incidence matrix Mm to the matrix
M

0

m such that the coeÆcients of its characteristic polynomial the coeÆcients of a
di�erence equation satis�ed by fm (hm).
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The matrix M
0

m is the incidence matrix of the (di)graph G
0

m (D
0

m)
obtained by contracting the vertices corresponding to the couples of symmetric
words or identical rows in Mm. The contraction of the vertices, for instance v
and w , is performed as follows: we reorient all lines going to v (x ! v) to the
vertex w (x ! w) and then remove the vertex v. We will say that it is the
contraction of the vertices v and w by removing vertex v.

The dimension of these reduced matrices M
0

m for some values of m are
given in Tab. 1 and Tab. 2.

m 3 4 5 6 7

j V (Gm) j 4 6 15 20 56

j V (G
0

m) j 3 5 9 14 31

m 3 4 5 6 7

j V (Dm) j 3 6 19 32 113

j V (D
0

m) j 2 4 7 15 43

Tab. 1 Tab. 2

We used Leverrier's method to obtain the characteristic polynomial of M
0

m:

g(x) = xp + c1x
p�1 + c2x

p�2 + : : :+ cp�1x+ cp:

We can get the generating function U(x)=V(x) for the sequences correspond-
ing to the M

0

m in the following way:

V(x) = xpg(1=x) = 1 + c1x+ c2x
2 + � � �+ cpx

p

U(x) = u0 + u1x+ u2x
2 + � � �+ up+1x

p+1;

where
u0 = u1 = 0; u2 = fm(2)

ui+2 = fm(i+ 2) +
Pi

j=1 cjfm(i� j + 2); 1 � i � p� 1:
(7)

(In the case of connected 2-factors it is necessery to put hm insteed of fm.)

mnn 2 3 4 5 6 7 8 9 10

2 1 1 2 3 5 8 13 21 34
3 1 0 3 0 9 0 27 0 81
4 2 3 18 54 222 779 2953 10771 40043
5 3 0 54 0 1140 0 24360 0 521064
6 5 9 222 1140 13903 99051 972080 7826275 71053230
7 8 0 779 0 99051 0 13049563 0 1729423756

Tab. 3 Values of fm(n) , 2 � m � 7 , 2 � n � 10

mnn 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1
3 1 0 2 0 4 0 8 0 16
4 1 2 6 14 37 92 236 596 1517
5 1 0 14 0 154 0 1696 0 18684
6 1 4 37 154 1072 5320 32675 175294 1024028
7 1 0 92 0 5320 0 301384 0 17066492
8 1 8 236 1696 32675 301384 4638576 49483138 681728204

Tab. 4 Values of hm(n) , 2 � m � 8 , 2 � n � 10
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F2(x) = x
2 [1]

[1;�1;�1]
F3(x) = x

2 [1]

[1; 0;�3]

F4(x) = x
2 [2;�1;�2; 1]

[1;�2;�7; 2; 3;�1]
F5(x) = x

2 [3; 0;�18; 0; 15]

[1; 0;�24; 0; 57; 0;�26]

F6(x) = x
2 [5;�11;�84; 101; 353;�256;�399; 200; 135;�45;�19; 3; 1]

[1;�4;�54; 67; 479;�264;�1171; 517; 928;�397;�217; 73; 23;�4;�1]

F7(x) = x
2 [8; 0;�725; 0; 20295; 0;�261639; 0; 1772203; 0;�6715082; 0;

[1; 0;�188; 0; 8462; 0;�160189; 0; 1535495; 0;�8158979; 0; 25253651; 0;

14790582; 0;�19244327; 0; 14597627; 0;�6125795; 0; 1266517; 0;�97104]

�46589758; 0; 51364132; 0;�33102019; 0; 11793011; 0;�2068475; 0; 131784]
:

Tab. 5. The generating functions Fm(x) =
P

1

n=0
fm(n)xn, 2 � m � 7.

Polynomials c0 + c1x+ c2x
2 + : : :+ cpx

p are written as [c0; c1; c2; : : : ; cp]

H2(x) = x
2 [1]

[1;�1]
H3(x) = x

2 [1]

[1; 0;�2]

H4(x) = x
2 [1]

[1;�2;�2; 2;�1]
H5(x) = x

2 [1; 0; 3]

[1; 0;�11; 0; 0; 0;�2]

H6(x) = x
2 [1;�1; 3;�24; 24;�3; 0; 3;�15; 9; 4;�2; 1]

[1;�5;�14; 63;�12;�90; 35; 66;�118; 8; 82;�42;�28; 4;�2]
:

Tab. 6. The generating functions Hm(x) =
P

1

n=0
hm(n)xn, 2 � m � 6.

Polynomials c0 + c1x+ c2x
2 + : : :+ cpx

p are written as [c0; c1; c2; : : : ; cp]
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