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REPRESENTATION OF METAMORPHOSIS GRAMMAR IN

LOGIC GRAMMAR: PROOF TREES AND THEIR LENGTHS
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Communicated by �Zarko Mijajlovi�c

Abstract. We consider the representations of metamorphosis grammar in logic grammar,
more precisely in Horn predicate logic, developed in [C078] on the Colmerauer idea of de�erence
lists. For the proofs in metamorphosis grammar in normal form the so called normal length of the
proof is de�ned and it is shown that this length equals to the length of the corresponding proof
in logic grammar.

If V is some vocabulary by V � we denote the set of all words on V (including
the empty word e) and by V [ ] the set of all lists on V (including the empty list [ ]).
The word has been de�ned in some standard way, for example as a �nite sequence
a1; a2; . . . ; an (we omit the comas in the case there is no possibility of confusion).
The list [a1; a2; . . . ; an] has been de�ned as the following term: a1 � (a2 � . . . (an �
nil) . . . ) built up from a binary functional symbol � so called list constructor and
a constant symbol nil playing a role of empty list [ ]. It is supposed that neither �
nor nil belong to V . The singleton list [a], i.e. the term a �nil is also denoted by a.

For the length of either a word or a list � we use the denotation j�j. With
words and lists the operation of concatenation written as product is de�ned recur-
sively in the standard way.

Let F be a set of functional symbols containing a binary functional symbol
� and a constant symbol nil, and let X be a set of variables. Then Term (F;X)
or shortly Term is the set of terms built up from F;X and H(F ) or shortly H is
the Herbrand universe, i.e. the set of terms containing no variables (we ad a new
constant symbol to form H(F ) if necessary). Following [CO78] with a slight modi-
�cation a metamorphosis grammar on F is de�ned as a quadruple G = (N;T; S; P ),
where: T � H is a vocabulary of terminals, N � H is a vocabulary of non-terminals

[We suppose that T
T
N 6= ; and de�ne V = T

S
N .], S � N is the set of starting non-

terminals, P is the set of rewriting rules on V [ ] [With the restriction: if � �! � belongs
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to P then � 6= nil.]. The language generated by G is the set: L(G) = ft 2 T [ ] j There
exists S2S with S �! tg.

We recall that a metamorphosis grammar G is in normal form if each its
rewriting rule is of the form:

A� �! � (1)

where A is a non-terminal symbol and � is a terminal list, i.e. belongs to T [ ]. In the
case � is empty list for each rewriting rule, G is called de�nite clause grammar. In
[C078] it has be proved that every metamorphosis grammar G can be transformed
into the corresponding grammar G0 in normal form such that the language L(G)
equals to L(G0). The similar property holds for Chomsky grammars.

The proofs in grammars in normal form (either Chomsky one or metamorpho-
sis one) have the appropriate tree representations similar to those for context-free
and de�nite clause grammars. For example the proof:

S �! AaBb �! AaaBb �! AaabbBb �! aAbBbBb �! aabbbbb (2)

in the Chomsky grammar G = (fS;A;Bg; fa; bg; S; P ) with the set P of rewriting
rules: S �! AaBb; A �! Aa; B �! bbB; Aaabb �! aAbBb; A �! a; B �!
b can be represented with the given tree. The dashed edges appear after application
of the rule Aaabb �! aAbBb.

We say that the nodes on the right side:
a, A, b, B, b have grown up after application of
this rule, and that the terminal nodes on the
left side: a, a, b, b have dried up and therefore
their edges become dashed.

As both Chomsky and metamorphosis
grammar are a kind of formal theories, for
a given proof � in either of these grammar
the length j�j of the proof would be the to-
tal number of atoms occurring in � (empty
atoms are not counted). Particularly in the
case of context-free of de�nite clause grammar
this number equals to the number of nodes in
the corresponding proof tree.

Consider a rewriting rule in a context free (de�nite clause) grammar:

A �! b1b2 . . . bn [A �! b1b2 . . . bn]

where A is a non-terminal and b1; b2; . . . ; bn are either terminals or non-terminals.
If we consider it as a proof (obtained by one application of the rule), its length is
1 + n, which is in accordance with the previous discussion. This proof is a special
kind of proofs which \start with A" and it can in a natural way be expanded to a
proof of the form �(A):

A �!� �(b1)�(b2) . . .�(bn) [A �!� �(b1)�(b2) . . .�(bn)]
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where �(b1); �(b2); . . . ; �(bn) are some proofs which start with b1; b2; . . . ; bn respec-
tively. If bi is a terminal, �(bi) reduces to bi [to bi] in which case we have j�(bi)j = 1.
It is easy to verify the following equality

j�(A)j = 1 + j�(b1)j+ j�(b2)j+ . . . + j�(bn)j (3)

Let now G be a grammar in normal form (Chomsky one or metamorphosis one)
and � a proof in G. Apart from the length j�j we introduce another kind of length
called normal and denote it by k�k, in which the nodes of both kinds (grown-ups
and dried-ups) are taken into account.

De�nition. Let �(S) be a proof in a Chomsky grammar (the only di�erence
in the case of metamorphosis grammar is the �rst equality which becomes S = �0)
built up step by step by the sequence of proofs:

S=�0;�1;... ;�i; �i+1;... ;�m=�(S)

the members of which expand each other meaning that each member has been
obtained from the preceding one by one application of the rule A� �! �, where
A 2 N , � 2 T �, � 2 V � [A 2 N;� 2 T [ ]; � 2 V [ ]], the corresponding normal length
is de�ned by the following recursion:

k�0k = 1; k�i+1k = k�ik+ j�j+ j�j: � (4)

If, for example, in the previous proof in a Chomsky grammar the following m rules
(s;A1; . . . ; F1 are non-terminals and �1; �1; . . . ; �1 are terminal words):

S�!�;A1�1�!�;B1�1�!
;... ;F 1�1�!�

have respectively been employed. Then the number k�(S)k satis�es the equality:

k�(S)k = 1 + j�j+ (j�1j+ j�j) + (j�1j+ j
j) + . . . + (j�1j+ j�j) (5)

As the proof �(S) starts with the non-terminal S (or with singleton list s), every
terminal which has been dried up in some step �i of the proof has to be previously
grown up in some step which comes before �i. Thus, as an important consequence
of the de�nition, we have that each dried node is counted twice in k�(S)k: �rst
time it has been grown up, second time it has been dried up. For example, the
normal length of the proof (2) is determined by the following equality:

k�(S)k = 1 + 4 + 2 + 3 + (4 + 5) + 1 + 1 + 1 = 22

We now consider the representation of metamorphosis grammar in logic grammars,
more precisely in Horn logic grammars, based on the idea of di�erence lists devel-
oped in [CO78]. Suppose that G = (N;T; S; P ) is a metamorphosis grammar on F

which is supposed to be in normal form. The corresponding �rst order Horn logic
grammar Gc is constructed in the following way:

The set of its functional symbols is F = T [ f�; nilg, where nil is a new
constant symbol and � is a new binary functional symbol (empty list and list con-
structor). The set X of variables is some countable set of symbols for example:
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X = fx0; x1; x2; x3; . . . g. The corresponding sets of terms and Herbrand universe
are Term and H respectively. The set of predicate symbols of Gc is determined
as follows: For each non-terminal S, A, B, C;... from N one predicate symbol s, a,
b, c; . . . is introduced. If R = r(t1; . . . ; tr) is some non-terminal from N built up
from a functional symbol r and terms t1; . . . ; tr, the length of the corresponding
predicate symbol r is determined as length (r) = length(r)+ 2. The sets of axioms
and rewriting rules of Gc is constructed in following way:

(i) If A� �! � is a rule from P where A 2 N , A = a(t1; . . . ; ta) and �, �
are terminal lists, then the following formula belongs to the axioms of Gc (� is a
variable from X):

a(t1; . . . ; ta; ��; ��) (6)

(ii) If A� �! �0B�1C�2 . . .D�n is a rule from P , where non-terminals
A;B; . . . ;D (n+ 1 of them) are of the form:

A = a(t10; . . . ; ta0); B = b(t11; . . . ; tb1); C = c(t12; . . . ; tc2); . . . ;

D = d(t1n; . . . ; tdn)

and �; �0; �1; . . . ; �n 2 T [ ] then the following Horn predicate formula belongs to
the the rules of Gc (�0; �1; . . . ; �n are variables from X):

b(t11; . . . ; bb1; �1�1; �0) ^ c(t12; . . . ; tc2; �2�2; �1) ^ . . .^

d(t1n; . . . ; tdn; �n�n; �n�1)) a(t10; . . . ; ta0; ��n; �0�0)

for which we use the standard grammatical denotation in the form of rewriting rule:

a(t10; . . . ; ta0; ��n; �0�0) �! b(t11; . . . ; tb1; �1�1; �0);

c(t12; . . . ; tc2; �2�2; �1); . . . ;d(t1n; . . . ; tdn; �n�n; �n�1)
(7)

We recall that in [CO78] for each non-terminal R = r(t1; . . . ; tr) from N the follow-
ing equivalence: R �!� t i� ` r(t1; . . . ; tp; [ ]; t) in logic grammar Gc has been
proved, where t 2 T [ ] and r is the predicate symbol corresponding to the non-
terminal R = r(t1; . . . ; tr).

We now con�ne to the problem of eÆciency of the above representation. One
natural way of treating the eÆciency of a logic grammar is to count the length of
(the shortest) proof of a theorem, which in the case of Horn logic grammar is equal
to the total number of atomic formulae occurring in the proof tree.

As in the rule (7) this number equals to the number of the non-terminals
occurring in the rule A� �! �0B�1C�2 . . .D�n from which (7) has been born, it
seems at the �rst sight that the total number of atomic formulae occurring in a
proof of Gc would be the total number of the non-terminals in the corresponding
proof tree of the original grammar G. But the things are not as simple as that. For
in the rule (7) we also have concatenation of lists which has not been taken into
account. If we use for concatenation a standard recursive de�nition by means of
predicate append:

append ([ ]; X;X)
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append ([X jY ]; Z; [X jU ]) �! append(Y; Z; U)

then, for example, if A[a; b] �! [a; a]A[b; b]B[a] is a rule of G, the corresponding
rule of Gc would be:

a([a; b]w; [a; a]u) �! a([b; b]�; u); b([a]w; �)

or after introduction the predicate append:

a(w00; u0) �! append ([a; a]; u; u0); a(�0; u); append ([b; b]; �; �0);

b(w0; �); append ([a]; w; w0); append ([a; b]; w; w00)

Further, as append has been de�ned recursively on the �rst list, the number of
atoms which are necessary to prove a formula of the form append (X;Y; Z) is equal
to the length of list X . Which in the case of our example means that the total
number of new nodes introduced after application of the above rule equals to:

j[a; a]j+ ja(�0; u)j+ j[b; b]j+ jb(w0; �)j+ j[a]j+ j[a; b]j = 2 + 1 + 2 + 1+ 1+ 2 = 9

This sequence of equalities corresponds to the following sequence which in the
original grammar G gives the total number of new nodes (grown-ups and dried-
ups) introduced after application of the rule A[a; b] �! [a; a]A[b; b]B[a]:

j[a; a]A[b; b]B[a]j+ j[a; b]j = 7 + 2 = 9

Such correspodence holds generally. Namely, if we transform the rules (6), (7) into
the form in which the concatenation of lists occurs explicitly, we obrain:

a(t1; . . . ; ta; �
00; �0) �! append (�; �; �0); append (�; �; �00) (8)

a(t10; . . . ; ta0; �
00

n; �
0

0) �! append (�0; �0; �
0

0); append (�; �n; �
00

n)

b(t11; . . . ; tb1; �
0

1; �0); append (�1; �1; �
0

1);

c(t12; . . . ; tc2; �
0

2; �1); append (�2; �2; �
0

2);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d(t1n; . . . ; tdn; �
0

n; �n�1); append (�n; �n; �
0

n);

(9)

If we further introduce the atomic formulae born on the basis of recursive appli-
cation of append, it is easy to see that the total number of atomic formulae which
would appear on the right side of the sign �! equals to:

j�j+ j�j; j�0j+ � � �+ j�nj+ n+ j�j

respectively. Thus, in the corresponding proof trees in the grammar Gc the nodes
a(t1; . . . ; ta; �

00; �0), a(t10; . . . ; ta0; �
00

n ; �
0

0) have exactly j�j+j�j, i.e. j�0j+� � �+j�nj+
n+ j�j children respectively, which equals to the number of nodes (grown-ups and
dried-ups) which appear after one application of the rules:

A� �! �; A� �! �0B�1 . . .D�n (10)
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in the proof tree of the original metamorphosis grammar G (in normal form). This
means that between proof trees in metamorphosis grammar and the corresponding
trees in logic grammars there is a natural one-to-one correspondence.

Theorem. Let G be a metamorphosis grammar in normal form and Gc the

corresponding Colmerauer Horn logic grammar. Then the total number of atomic

formulae occurring in a proof in the de�nite clause grammar Gc equals to the normal

length of the corresponding proof in the original grammar G. Thus let

S �!� t; ` s(t1; . . . ; ts; [ ]; t)

be corresponding proofs in the grammars G, Gc, where t 2 T [ ], S=s(t1;... ;ts) is a

starting term of G and s is the related predicate of the logic grammar Gc. Denote

these proofs by �(S), �c(S) respectively. Then:

j�c(S)j = k�(S)k (11)

Proof. The equality can be proved by induction on length of the proof �c(S).
Thus consider the sequence of proofs in the grammar Gc:

s(t1; . . . ; ts; [ ]; t) = �0; �1; . . . ; �i; �i+1; . . . ; �m = �c(S)

the members of which expand each other. Supposing that �i+1 has been obtained
by application of the rule corresponding to A� �! �, where � is terminal list
or � = �0B�1 . . .D�n where A;B;C;... ;D are non-terminals and �; �0; �1; . . . ; �n are
terminal lists from T [ ], then on the basis of the rules (8), (9) it is easy to check
that the following equalities:

j�i+1j = j�ij+ j�j+ j�j; j�i+1j = j�ij+ j�0j+ � � �+ j�nj+ n+ j�j = j�ij+ j�j+ j�j

hold respectively, for in the case � = �0B�1 . . .D�n we have:

j�j = j�0B�1 . . .D�nj = j�0j+ jBj+ j�1j+ jCj+ j�2j+ � � �+ jDj+ j�nj

= j�0j+ j�1j+ � � �+ j�nj+ n

Thus for the above sequence of proofs in the grammar Gc we immediately obtain
the recurrence formulae:

j�0j = 1; j�i+1j = j�ij+ j�j+ j�j (12)

which are of the same kind as the formulae (4) by which the normal length for
the corresponding sequence of proofs in the original grammar G has been de�ned,
wherefrom the claim of the theorem follows immediately. �
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