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CONVOLUTION IN COLOMBEAU'S SPACES

OF GENERALIZED FUNCTIONS

PART I. THE SPACE Ga AND THE a-INTEGRAL

M. Nedeljkov, S. Pilipovi�c

Abstract. We investigate subspaces of Colombeau's generalized function space and the
generalized integrals in these spaces. The obtained results enable us to study, in the second part
of the paper, the generalized convolutions and the Fourier transform in these spaces.

0. Introduction

The Colombeau new generalized function space G [3] has a lot of advantages
in applications. This stimulates investigations of various subspaces of that space.
In this paper we investigate spaces Ga. The obtained results will be used for
investigations of convolution in Ga spaces.

In Section 1 we repeat Colombeau's de�nitions of spaces of generalized func-
tions G, generalized complex numbers C and generalized tempered functions G� . In
Section 2, we introduce the class of functions denoted by A and for every a 2 A
the space of generalized a-functions Ga. For t(x) = x, x > x0, we get Gt = G� . In
Section 3, we introduce the notion of a; �-integral and of a-integral.

1. Colombeau's de�nitions

As usual, Rn is Euclidean n-dimensional space, C is the set of complex
numbers and N is the set of natural numbers N0 = N [ f0g. For � 2 Nn0 ,

@� = @j�j=@x�11 . . . @x�nn , where j�j = �1 + � � � + �n and if i 2 Nn0 , then i � �
means ik � �k, k = 1; . . . ; n. D(Rn ), S(Rn ) are well known Schwartz test function
spaces. For the properties of these spaces and other test function spaces and their
duals we refer to [7]. Let us recall some de�nitions from [3].

Aq is the set of all functions � 2 D(Rn ) which satisfy:

(1)

Z
�(t) dt = 1;

Z
�(t)ti dt = 0; 1 � jij � q; where q 2 N :
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�R
means

R
Rn

�
.

Clearly A1 � A2 � . . . . Let �"( � ) = "�n�( �="), " > 0; �" 2 Aq i� � 2 Aq .

E [Rn ] is the set of all functions G : A1 � Rn ! C which satisfy:

(2) For every � 2 A1, G(�; � ) 2 C1(Rn ).

EM [Rn ] is the set of all functions G 2 E [Rn ] which satisfy:

(3)

8<
:

For every compact setK and every � 2 Nn0 there existsN 2 N such that
for every � 2 AN there exist � > 0 and c > 0 such that j@�G(�"; x)j �
c"�N , x 2 K, " 2 (0; �).

Denote by � the set of all increasing sequences tending to in�nity. N [Rn ] is the set
of all functions G 2 E [Rn ] which satisfy:

(4)

8<
:

For every compact set K and every � 2 Nn0 there exist N 2 N and
� 2 � such that for every � 2 Aq and q � N , there exist � > 0 and

c > 0 such that j@�G(�"; x)j � c"�(q)�N , x 2 K, " 2 (0; �).

G(Rn ) = EM [Rn ]=N [Rn ] is the set of generalized functions. We shall omit
the sign Rn when it does not cause misinterpretations. G 2 G is de�ned by its
representative G 2 EM .

If we use an open set 
 instead of Rn we have G(
) instead of G.

Ec is the set of all functions Z : A1 ! C which satisfy:

(5)

�
There exists N 2 N such that for every � 2 AN there exist � > 0 and
c > 0 such that jZ(�")j � c"�N , " 2 (0; �).

F is the set of all functions Z 2 Ec which satisfy:

(6)

�
There exist N 2 N and � 2 � such that for every � 2 Aq , q � N , there

exist � > 0, c > 0 such that jZ(�")j � c"�(q)�N , " 2 (0; �).

C = Ec=F is the set of generalized complex numbers. Z 2 C is given by its
representative Z 2 Ec.

The mapping Cd : D0 ! G, is de�ned in the following way. Let g 2 D0.
Then Cd(g) = G, where G(�"; x) = hg(t); �"(t � x)i = g � ��"(x), x 2 R

n , �" 2 A1

(��(x) = �(�x)). This is an injective mapping.

The pointwise product, the sum and the derivative in G are naturally de�ned
on the corresponding representatives. These de�nitions are correct in the sense
that they do not depend on representatives from EM .

Let H be the set of all monotone functions h : (0; 1) ! (0; 1) such that
lim"!1 h(") = 0, and let diam(supp(�)) = 1, � 2 A1. For every h 2 H,
j 2 f1; . . . ; ng and G 2 G the h-regularized derivative @hjG is de�ned by its repre-
sentative�

@jG(�"; � ) � �h(")
�
(x) =

Z
(@jG)(�"; x� h(")y)�(y) dy

=
1

h(")

Z
G(�"; x� h(")y)@j�(y) dy; " > 0:
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Z 2 C is associated with z 2 C , denoted by Z � z, if for its representative Z
there exists N 2 N such that lim"!0 Z(�") = z, � 2 Aq , " > 0, q � N . It is easy
to see that this de�nition does not depend on representatives of Z.

Let K be a compact set. The integral
R
K
G(x) dx 2 C is de�ned by its

representative
R
K
G(�"; x) dx 2 Ec, �" 2 A1.

The support of a generalized function G is the complement of the largest
open set O such that GjO = 0 in G(O). Let G have a compact support. Then for

any compact set K which contains supp(G) in his interior we de�ne
R
G(x) dx =R

KG(x) dx.

A G 2 G is equal to zero in the sense of generalized distributions (G =
0 (g.d.)) if for every ' 2 D,

R
G(x)'(x) dx = 0 (the representative of

R
G(x)'(x) dx

is
R
G(�"; x)'(x) dx, x 2 Rn , � 2 A1, " > 0, and it belongs to F). G1 = G2 (g.d.)

i� G1 �G2 = 0 (g.d.)

G 2 G is associated with g 2 D0, G � g, i� for every ' 2 D,
R
G(x)'(x) dx �

hg; 'i. G1 � G2 i� G1 � G2 � 0 (zero distribution). If G1 = G2 (g.d.), then
G1 �G2 and Cd(g) � g, g 2 D0.

E� [Rn ] is the set of all functions G 2 E [Rn ] which satisfy:

(7)

8<
:

For every � 2 Nn0 there exists N 2 N such that for every � 2 AN there
exist � > 0 and c > 0 such that j@�G(�"; x)j � c"�N (1+ jxjN), x 2 Rn ,
" 2 (0; �).

N� [R
n ] is the set of all functions G 2 E [Rn ] which satisfy:

(8)

8<
:

For every � 2 Nn0 there exist N 2 N and � 2 � such that for every
� 2 Aq , q � N , there exist � > 0 and c > 0 such that j@�G(�"; x)j �
c"�(q)�N (1 + jxjN ), x 2 Rn , " 2 (0; �).

G� (Rn ) = E� [Rn ]=N� [R
n ] is the set of generalized tempered functions.

For G 2 G� ,
R �
G(x) dx is de�ned by its representative

R
G(�"; x)�̂"(x) dx,

where �̂(x) =
R
�(t)e�ixt dt is the Fourier transform of �, x 2 Rn , � 2 A1. If the

integration is made over a compact set K, instead of Rn , then we get the de�nition

of the integral
R �
K
G(x) dx by its representative

R
K
G(�"; x)�̂"(x) dx, �" 2 A1, " > 0.

This is an element of C .

2. New de�nitions

Denote by a a function de�ned on an interval [1a;1) such that it is contin-
uous, nondecreasing,

(9) lim
x!1

a(x) =1 and a(x) = O(x); x!1:

The set of such functions is denoted by A. Notice that if a 2 A, then
ln(a) 2 A, as well. Let a 2 A be �xed. We de�ne �a as the set of all functions �
de�ned on the interval [0;1), with the following properties:

(10)

�
� is continuous, increasing, �(0) = 1 and for every p � 0 there exists a
 > 0 such that �(p+ a(x)) = O(x), x!1.
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If we assume that (10) holds only for p = 0, then the corresponding set is
denoted by �a. Clearly �a � �a, and �a 6= ?. One can easily prove the following
proposition.

Proposition 1. a) If �1, �2 are in �a, then �1+�2 and �1�2 are in �a. b) If
� 2 �a, then � 2 �ln(a). c) If for a1;a2 2 A there exists constant c > 1 such that

a1(x) � ca2(x), then �a1
� �a2

and �a1
� �a2

.

We de�ne the set
�

�a as follows:
�

�a is the set of all function � from �a which satisfy:

(11)

�
There are a constant c > 1 and functions �1 and �2 in �a such that for
x; y > x0, �(x+ y) � c�1(x)�2(y).

Let us notice that Proposition 1 a) and b) also holds for �a and
�

�a.

Proposition 2. a) If � 2 �a, then � 2
�

�ln(a). b) If for some � > 1 and

some m 2 N, �a(x) � a(xm), then
�

�a = �a. c) If for a1;a2 2 A there exists

constant c > 1 such that a1(x) � ca2(x), then
�

�a1
�

�

�a2
.

Proof . Since c) trivially follows we shall give the proof of a) and b).

a) We have

�(2 ln(a(x))) = �(ln(a(x))2) � �(a(x)) = O(x); x!1;

so, we get �(2x) 2 �ln(a). If limx!1 �(x) � 1, then there exists a c > 0 such that
�(x+ y) � c�(2x)�(2y), for x, y large enough.

If limx!1 �(x) > 1, then, for large enough x, y, we have �(2x) � 1, �(2y) � 1,

and thus �(x+ y) � �(2x)�(2y). In both cases � 2
�

�ln(a), because �(2x) 2 �ln(a).

b) The given condition implies that for any � 2 �a, �(2 � ) 2 �a as well. As
in a), the proof follows.�

Remarks . For t(x) = 1+x, we have
�

�t = �t = �t. Propositions 1 c) and 2 c)

imply that for every a 2 A, �a and
�

�a are not empty. For a(x) = ln(x + 1) + 1,

we have also
�

�a = �a = �a. For a(x) = ln(ln(x+ 1) + 1) + 1,
�

�a is not equal to
�a; neither in this case �a is not equal to �a.�

Let a 2 A. The space of generalized a-functions is de�ned as follows: Ea[Rn ]
is the set of all functions G 2 E [Rn ] which satisfy:

(12)

8<
:

For every � 2 Nn0 there exist N 2 N and � 2 �a such that for every
� 2 AN there exist an � > 0 and a c > 0 such that j@�G(�"; x)j �
c"�N�(jxj), x 2 Rn , " 2 (0; �).
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Na[R
n ] is the set of all functions G 2 E [Rn ] which satisfy:

(13)

8<
:

for every � 2 Nn0 there exist N 2 N, � 2 �a and � 2 � such that
for every � 2 Aq , q � N , there exist an � > 0 and a c > 0 such that

j@�G(�"; x)j � c"�(q)�N�(jxj), x 2 Rn , " 2 (0; �).

Proposition 3. Let a 2 A. Then Na is an ideal of Ea.

Proof . Let G 2 Na, and H 2 Ea. We have to prove that GH 2 Na. For
every � 2 Nn0

@�(GH) =
X

i+j=�

sij@
iG@jH; where sij =

�!

i! j!
.

We adopt the notation for G and @i , i � � in (13) by using symbols with subindex

2;i (N2;i, �2;i, . . . ). We do the same for H and @j in (12) by using symbols with
subindex 1;j . Let

N = max
i+j=�

fN1;j +N2;ig; �(q) = max
i��

�i(q);

� =
X

i+j=�

sij�1;j�2;i; c =
X

i+j=�

c1;jc2;i:

For every � 2 Aq , q � N , let � = mini;j��f�1;j ; �2;ig. Then for x 2 Rn , " 2 (0; �),
we have

j@�(GH)(�"; x)j �
X

i+j=�

sij j@
iG(�"; x)j j@

jH(�"; x)j

�
X

i+j=�

sijc1;j�1;j(jxj)"
�(q)�N1;j c2;i�2;i(jxj)"

�N2;i � c�(jxj)"�(q)�N :

By Proposition 1 a) we have that � 2 �a and the proof is complete.�

Now we de�ne the space of generalized a-functions by Ga = Ea=Na. This
is a vector space over C and if G 2 Ga, then for any � 2 N

n
0 , @

�
G 2 Ga. By

similar computations as in Proposition 3 we have that the pointwise product of two
generalized functions from Ga is again in Ga.

One can easily prove the following

Proposition 4. Let a1;a2 2 A such that a1(x) � ca2(x), where c > 1 is

a suitable constant. Then: a) Ea1 � Ea2 , Na1
� Na2

; b) for every a 2 A the

inclusion mapping i : Ga ! G, i(G+Na) = G+N , G 2 Ea is not injective; c) the
inclusion mapping i : Ga1 ! Ga2 , i(G+Na1

) = G+Na2
, G 2 Ea1 is not injective

in general case.

Proof . Since a) is trivial, we shall prove b) and c).

b) One can prove that Et = E� , Nt = N� , so Gt = G� . Proposition 4 a) implies
Et � Ea, Nt � Na. Colombeau has proved in [3] that the mapping i : G� ! G
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is not injective. For the same function R, which Colombeau has constructed, we
have: R 2 E� \N � Ea \N and R =2 Na for every a 2 A. So, neither the mapping
G+Na ! G+N is not injective.

c) Let a1 = t and a2(x) = ln(x+ 1). We shall construct a function G(�"; x),
x 2 R, � 2 AN , " > 0, such that for some c > 0

G(�"; x) � c"�N (1 + x2)1=2; x 2 R; � 2 AN ; " > 0;

G(�"; x) � c"Nex(1 + x2)1=2; x 2 R; � 2 AN ; " > 0;

but there does not exist constants N 0 2 N, c > 0, � 2 � and � 2 �t such that

G(�"; x) � c"�(q)�N
0

�(jxj); x 2 R; � 2 Aq ; q > N 0; " > 0:

This means that G 2 (Et\Na2
)nNt and that the inclusion mapping i : Ga1 ! Ga2 ,

i(G+Na1
) = G+Na2

, G 2 Ea1 is not injective.

Put

G(�"; x) = g(�"; x)�(�")"
N (1 + x2)1=2; x 2 Rn ; � 2 AN n AN+1;

where �(�") = supfjxj : x 2 supp(�")g, g(�"; x) = �" � f(�"; �)(x), and where
f(�"; �) is an even function de�ned by

f(�"; x) =

�
ex; x � �(N + 1) ln(�(�"))

�(�")
�N�1; x > �(N + 1) ln(�(�")):

By a simple calculation, for b = (N + 1) ln(�(�")), a = �(�") we get the following
function:

g(�"; x) =

=

8>>>>>>>>>>><
>>>>>>>>>>>:

�(�")
�N�1; a� b � x

ex
R a
x+b

�"(t) dt+ �(�")
�N�1

R x+b
�a

�"(t) dt; � a� b � x < a� b

ex
R a
�a
e�t�"(t) dt; 0 � x < �a� b

e�x
R a
�a
e�t�"(t) dt; a+ b � x < 0

e�x
R x�b
�a �"(t) dt+ �(�")

�N�1
R a
x�a �"(t) dt; � a+ b � x < a+ b

�(�")
�N�1; x � �a+ b:�

If we use the set
�

�a, instead of �a, then we get de�nitions of the sets
�

Ea,
�

N a,
�

Ga instead Ea, Na, Ga, which have the same properties. Since
�

Ea � Ea,
�

N a � Na,

there is the inclusion mapping i :
�

Ga ! Ga, i(G +
�

N a) = G +Na, G 2
�

Ea. The
injectivity of this mapping is an open problem.

Proposition 5. Let g 2 D0 be a distribution of �nite order. There exists

a 2 A such that Cd(g) 2 Ga. Particularly, the space of distributions of �nite order

can be embedded into
S
a2A Ga.
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Proof . There exist a continuous function f and � 2 N
n
0 such that g = @�f .

For � 2 Nn0 we have @�G = Cd(@�g) = Cd(@�+�f), and

@�G(�"; x) = @�+�f � ��"(x) =

Z
f(x+ t)@�+��"(t) dt

= "�(j�j+j�j)
Z
f(x+ "t)@�+��(t) dt; x 2 R; � 2 A1; " > 0:

We have����
Z
f(x+ "t)@�+��(t) dt

���� �
Z
jf(x+ "t)j j@�+��(t)j dt; " > 0:

Let f1 be an even, positive and continuous function on R increasing on [0;1) such
that f1(jtj) � jf(t)j and f1(jtj) � cjtj for t 2 Rn . ThenZ

jf(x+ "t)j j@�+��(t)j dt � f1(jxj + "a�;�)

Z
j@�+��(t)j dt; x 2 R

n ; " > 0;

where a�;� = supfjtj : t 2 supp(@�+��)g. Let �(x) = f1(x + 1), x 2 [0;1) and
a = ln(��1), where ��1 is the inverse function for � de�ned on the corresponding
interval (�(0);1). Clearly � 2 �a. Let N = j�j+ j�j, � 2 AN , c =

R
j@�+��(t)j dt

and � = 1=a�;�. Then

j@�G(�"; x)j � c�(jxj)"�N ; x 2 R
n ; " 2 (0; �):

This implies that Cd(g) 2 Ga�.

Let us show that the regularized derivative is well de�ned in the space Ga for
any a 2 A. Let G 2 Ea, j 2 f1; . . . ; ng. By (12) we have

j@hjG(�"; x)j =

����
Z
@jG(�"; x� yh("))�(y) dy

����
�

Z
j�(y)j dy � sup

y2supp(�)
j@jG(�"; x� yh("))j

� c1c�(jxj + jyjh("))"�N � c2�(jxj);

where c2 = c1c�sup
�
�(jyjh(")) : y 2 supp(�); " 2 (0; 1)

	
. That means that @hj 2 Ea.

The proof for G 2 Na is similar.

3. a-integrals

We de�ne the unit net �", " > 0, which corresponds to a as follows. This is
a net in D such that

(14)

8>>>>>>>><
>>>>>>>>:

(i) 0 � �"(x) � 1; x 2 R
n ; " > 0;

(ii) �"(x) =

�
1; jxj < a(b=")

0; jxj > a(b=") + r; " > 0;

where b > 0, r > 0 are constants;

(iii) for every l 2 N
n
0 there is cl � 0 such that

j@l�"(x)j � cl, x 2 R
n , " > 0.
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Let B be a measurable set. For G 2 Ga we de�ne
R
a;�

B G(x) dx as an element

of C by the representative

(15) BY�;G(�") =

Z
B

G(�"; x)�"(x) dx; �" 2 A1; " > 0:

Let G 2 Na. Then

jBY�;G(�")j �

Z
B

jG(�"; x)j�"(x) dx

�

Z
jxj�a(b="+r)

B

jG(�"; x)j dx � �(a(b=") + r)"�(q)�N � c"�(q)�N1 ; " > 0;

where we used the notation from (13). Similarly, one can prove that if G 2 Ea,
then BY�;G(�") 2 Ec. So, the de�nition is correct. If for every unit net �", " > 0,

BY�";G(�") � c 2 C , then we say that there exists the associated a-integral of G

and write
R
a

B G(x) dx � c. If we have BY�1;G(�") � BY�2;G(�") 2 F for every two

unit nets �1, �2, then we de�ne the a-integral of G over B byZ
a

B

G(x) dx = F + BY�1;G(�"):

Proposition 6. Let g 2 D0L1 . Then G = Cd(g) 2 Ga for every a 2 A.
Moreover, there exists the associated a-integral of G.

Proof . There exists m 2 N such that

(16) g =
X
jij�m

@igi; where gi are L
1 functions.

Let us put

�gi(x) =

Z xn

0

dtn � . . . �

Z x1

0

gi(t1; . . . ; tn) dt1; x 2 R
n ; jij � m:

We have j�gi(x)j �
R
jgi(t)j dt = Mi, and @i1+1;... ;in+1�gi(x) = @ig(x), x 2 Rn ,

jij � m.

This implies that g is a �nite sum of distributional derivatives of bounded
functions and since bounded functions are in Ga, for any a 2 A, the same follows
for g, as well. By using the representation (16) we have

G(�"; x) =
X
jij�m

(gi � @
i ��")(x); x 2 Rn ; � 2 A1; " > 0:

For jij > 0 and a unit net �", " > 0, we have

Ii;" =

Z
Rn

(gi � @
i ��")(x)�"(x) dx = (�1)jij

Z
Rn

(gi � ��")(x)@
i�"(x) dx

= (�1)jij
Z
Rn

gi(x)(�" � @
i�")(x) dx; " > 0:
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Clearly, for every x 2 R
n , gi(x)(�" � @i�")(x)! 0, as "! 0. We have

jgi(x)(�" � @
i�")(x)j � jgi(x)j

����
Z
�"(t)@

i�"(x � t) dt

����
� cijgi(x)j

Z
j�"(t)j dt � ccijgi(x)j; x 2 R

n ; " > 0:

Thus, by applying Lebesgue's dominated convergence theorem, for m � jij > 0, we
have Ii;" ! 0 as "! 0. By a similar calculation, for i = 0 we have I0;" !

R
g0(x) dx,

as "! 0. This impliesZ
a;�

G(x) dx �

Z
g0(x) dx; i.e.

Z
a

G(x) dx �

Z
g0(x) dx:�

Remark . If g 2 L1 and for every b > 0, r > 0, there exist N 2 N and � 2 �
such that for every � 2 Aq , q � N , there exist an � > 0 and a c > 0 such that����

Z
jxj�a(b=")+r

(��" � g)(x) dx

���� � c"�(q)�N ; 0 < " < �;

then there exists the a-integral
R
a
Cd(g) dx.

The following example will show that it is not possible to de�ne a; �-integral
in G in the way described above.

Example. Let �" be a unit net. There are constants r1 < r and c > 0 such
that �"(x) � c for jxj � a(b=") + r1, " > 0. De�ne G 2 EM by

G(�"; x) =

�
0; jxj � a(b=");

ea
�1(x); r1=2 + a(b=") � jxj � r1 + a(b=");

� 2 A1; " > 0:

One can prove that G 2 N . Since
R
a;�

G(x) dx � (r1=2)e
b=", " > 0, it follows thatR

a;�
G(x) dx =2 F .�

Let ' 2 S and G 2 Gt. We de�ne hG; 'i =
R
G(x)'(x) dx by its representa-

tive

(17) I(�") =

Z
Rn

G(�"; x)'(x) dx; � 2 A1; " > 0:

Proposition 7. a) The de�nition of hG; 'i given by (17) is correct. b) For
every G 2 Gt, every unit net �" and every ' 2 S, we haveZ

t;�

G(x)'(x) dx =

Z
G(x)'(x) dx;

Z
t;�

G(x)'(x) dx =

Z �

G(x)'(x) dx:

Proof . a) Let G 2 Nt. By using the notation from (13), this means that
for every � 2 Aq , jG(�"; x)j � c1(1 + jxj)"�(q)�N , x 2 Rn , 0 < " < �. For every
p 2 N there is a c2 > 0 such that j'(x)j � c2(1 + jxj)�p, x 2 Rn , and by putting
p = [] + n+ 1, with suitable c > 0, we have

jI(�")j �

Z
jG(�"; x)j j'(x)j dx � c"�(q)�N ; 0 < " < �; � 2 Aq ; q > N:
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So, I 2 F . Similarly, one can prove that G 2 Et implies I 2 Ec.

b) Adopting the notation from (12) and (13) we obtain

jZ(�")j =

����
Z
G(�"; x)'(x) dx �

Z
G(�"; x)�(x)�"(x) dx

����
�

Z
jxj>b="+r

jG(�"; x)j j'(x)j dx

� "�N
Z
jxj>b="+r

c1(1 + jxj)c2(1 + jxj)�p dx � c"q�N ;

where p =  + n+ 1 + q. This implies Z 2 F . Similarly,����
Z
G(�"; x)'(x) dx �

Z
G(�"; x)'(x)�̂"(x) dx

����
�

Z
jG(�"; x)'(x)j j1 � �̂"(x)j dx �

Z
c"�N"qjxj�p dx � c"q�N :�

We say that G1 = G2 (g.t.d) (equal in the sense of generalized tempered
distributions) if for every ' 2 S, hG1; 'i = hG2; 'i (in C ).

Proposition 8. Let G 2 Gt, g 2 S 0 and G � g. Then

lim
"!0

Z
G(�"; x)'(x) dx = hg; 'i; ' 2 S:

Proof . Let ' 2 S, � 2 AN . There exists a  > 0 such that jG(�"; x)j � c1jxj .
Let Æ > 0. Chose  2 D such that

jhg; 'i � hg;  ij < Æ; j'(x) �  (x)j < cÆ=(1 + jxj)p; x 2 R
n ;

where p >  +1 and c�1 = c1
R
jxj(1 + jxj)�p dx. There exists an � > 0 such that����

Z
G(�"; x) (x) dx � hg;  i

���� < Æ; for 0 < " < �.

Thus, we obtain����
Z
G(�"; x)'(x) dx � hg; 'i

����
�

����
Z
G(�"; x) ('(x) �  (x)) dx

���� +
����
Z
G(�"; x) (x) dx � hg;  i

����+ jhg;  i � hg; 'ij

< Æ + Æ + Æ = 3Æ; for 0 < " < �.�
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