~ SOME THEOREMS
CONCERNING RIESZ'S FIRST MEAN

By C. T. RAJAGOPAL

- 1. This paper is a study, from a particular point of view,
of certain theorems involving the first Riesz's mean. The point
of view finds expression in two of my previous papers(!) in which
I have shown that all the criteria for the absolute convergence
of Za, issue from. « ‘ ,

Theorem A. If {\,} is a strictly increasing divergent.
sequence with Apyy—Xy=0(1) and if
(a) ‘ Mty — }"’7 =F O"II-H)’ |
where F(x) is positive monotone decreasing, then Ta, is abso!utely
0 .
convergent provided f F(x)dx is convergent;
and its modification, the generalized Brink convergence test:
Theorem B. If {\,} is as in Theorem (A) and if

1 | @np1| (Anga = M)
b —1 =< g(\ , -
( ) }\n+1 _ An Og l all I ()\n+2 _ )\n+)) g( ’l+1)

o0
where g(x) has a continuous derivative g'(x) such that f lg'(x)] dx
is convergent, then Za, is absolutely convergent provided
0 .
exp [[2(®)ds]dx is convergent.

A further twofold én_quiry may be pursued. 1° If Za,
belongs to the special class of series summable R(%,, 1), how.

() Rajagopal: [6], [T}
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may we relax the restriction of convergence on the ,test inte-
grals“ in order that hypothesis (a) or (b) shall still ensure the
convergence of-Za,? 2° If £a, belongs to the wider class of
series bounded R(X,, 1), how may we relate its limits of oscil-
lation to the test integrals“ under the same hypotheses? It is
suggested here that the classic theorems relating to Riesz’s first
mean fall naturally within the scope of this enquiry.

Notation. {\,} is a sequence such that

1
0<hy< <., . <2y <Ap—> @ : (n—> ).
2] n
Z a, denotes a real series; s,= Z ay . o, is the first Riesz's
n=0 v=0

- mean of {s,} with respect to {%,}; i.e,

) °u=2(}\v+l }\v)sv
y==0 :
s-lim ", 5 =1im ¥ o,
—  p=o laf. —  p=ow-inf.
2. The results in this section are the analogues of Theorems

(A) and (B) for series summable R(\,,1). The main argument
of the section runs on the lines of a simple and direct proof
given by N. Higaki(*), of the Hardy-Landau convergence theorem
for such summable series. - ;

- Theorem 1. Let }\,,Jrl ~X\y. LetZa, sattsfy the conditions:

(l) : . *S+0(1),
(2a) TT? o

n+1)

where F(x) is monotone decreasing in every interval (M2, Magy)

X . “
and f F(8)d¢ is a slowly decreasing function in the sense that
: y
(3a) lim sup fF(E‘,)dé <0,
X=0® :
X

(®» Higaki: [2], 74-—-75.
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for any x' > x such that x' ~ x. Then
(4) Sp=5+0(1).
Proof. If m>g,

. m .
}\m-{-l }\m—H ) [ ]
Om — Gy = - 1|8+ 2‘2\ -2 )(sy ~S A
)\q+1 m q }\q +1‘ q- ,,=q+1( vl v )( v q) / q+1
At / Ami1
5 .é(—i”i’——-l)s +( "’+—1) Max (s, - s;).
5) Ror | S0t e 1] Max (s,-s)

Summing (2a) for n= g+1,q¢+2,... v, we obtain
Sv =S¢ = (g2~ M) F(Xgp2) ++- + (Mvg1 =X ) Foa)

v+1
f F(x)dx
A
Hence (5) gives
. g1
}¥m+1 (lm+1 - ) ( }\m—l-l ) ’ Y R
6 Om - Og & Sq+ -1/ Max
() )“H‘l m - %q v}‘q-H'_ q }\q+l G v F(x)dx
Agq1.
Let ¢ be first chosen from an increasing sequence of
integers tending to o so that lim s,=s. Let m be then chosen

from another sequence, so related to the first that for an asso-
ciated ¢ and m

Amgr _

lim
}"11+1

K-0(>>'_l). Then ‘making ¢g—» o in (6), we

obtain

) T
()\—l)sé()\—l)s+(k—l)hm sup Max fF(x)dx.
. H<v<m
g+1

Removing the factor X—1-and letting X — 1+0, we find, in
consequence of (3a) |

. S=Es5+¢€.
€>0 bemg arbitrary, it follows that
©) : S=s.
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Next, ¢ being <m,

A 2 = '
q+1 g — Om = —(l _}\'q+1) Sm + [Z ()"V'H —}\.v) (Sm —Sv)]/}.m_!_l

Ami1, m41
) v=g+1
Mgt Mgt (s
(8) L~ 1—}\ Sm+ {1 ——— Max  (sm-s)
m-+1 mtll g1 ZLyLm '
A Cenl o Ami1
9 é—(l —-}—\l’—"l)sm+(l ——"—“) Max fF(x)dx.
’ m+1 ‘mtllg 1 Ly Zm ‘
) R

Suppose now that m, g are members of increasing divergent
sequences of integers chosen (in the order mentioned) so that

mn . .
.m— oo first and then 0—»1 -0 (after removing the factor 1-¢),
we get, as a result of (3a),

lim s, = s and lim ;‘T"ﬂf= 0+0(<1). Then, from (9), letting
’ 1

. ~S£L -S+€
and hence

(10) | S<s
(4) now follows from (7) and (10).
Corollary 1.1, If F(x)é—l;, the convergence criterion

for series Ta,, summable R(\,, 1), assumes the form:

a, H
! £ . Hardy-Landau
Rapr-2a T Map [Hardy-Landau]

e G (e :
It F) =3ty for < ghann (10,1200,

the criterion assumes the form:
lim sup (Spw—S,) 20
n=®w
for n” > n such that My~ X, as n— o. [Schmidt-Karamata]®)
In Theorem 1, (2a) can of course be replaced by

an

—2 > (1),
T, S (A n1)

(® Karamata: [4], 33.
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where f(x) is monotone increasing in every interval (M., Myt1)

X
and f f(§)ds is a slowly decreasing function. The new form
of the theorem gives the ,left-handed® convergence - criteria
corresponding to the above.

Corollary 1.2. Theorem 1 can be readily modified so
as to bring out its relation to Theorem B. The modification
will run as follows: . :

If, in Theorem B, we assume the summability R(\,, 1) of
Za, and, instead of the convergence of the test integral, the

' x x
slow increase of j exp[ f g(é)d%] dx, the convergence of Za,
follows. ; '
To‘ establish this, we observe that (b) leads to

)‘-n+1 x
lanlé,CfeXP [f 2(8)ds] dx(*)
where C is a coristant depending on the lower limit in" f 2(8)ds,
‘and then proceed on the lines of the proof of Theorem 1.

" 3. The oscillation theorems stated below as lemmas are
due in substance to Fejér.5) They involve two functions, one
based on the idea of increase, and the other on the .idea of -
decrease, of a sequence {s,} with respect to the sequence {2,}
in Theorem 1. The first function may be defined by _

' lim sup. Max (s, - $o—y) < W(9) (say)

A=w pZyLH-1 .
for t> 1, Ay £ th; <Myya; the second function being ’
- lim inf Min (s, — s,—,) < w(?) -(say),
n=w n<Ly=N-1 :
_with -the same restrictions on t, N,

_ The arguments of the preceding section show that if
c=c=s, then lim W()=0 or lim w(¥)=0 implies s=s=s5.
- t=140 : t=140 , -

(%) The argument is as in Rajagopal: [7], 119. '
(®) Fekete and Winn: [1], 490; Karama’ta: [3], 20.
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They also suggest that if o == o, we can obtain the following
relations between o, o, s or s and W(z), w(?).

‘Lemma 1. Lét hypy ~2,. Let W(t) be defined as above,
Then

a1 Ae-o<£ (A-Ds+(-1)WQ) a>1,
(12) .eg-E,é -(1 —»e)§+(1-e)‘w(—’e-) ‘ v-(0<e<1)»;

and, 1f 6~~—1- from (11) and (12),
l-%—l

s-s£i (G-0)+2 WQ). [Fejér.]

Proof. From (5), with the choice of ¢, m in the first
part of the proof of Theorem 1, we get

}\m—H (}kml—l ) (}&m«!—l - ) -
Ay " Bk lq+i~1 ot Fpm W) +o(l) (g—0).

Proceeding to the limit as g —» o, we obtain (11) from the last
inequality,

Again, from (8) with the choice of m, ¢ in the latter part
of the Theorem 1, we have

A A A 1y .
I o o £ - (l .—}\;+2)5m+(1 )\mq+])W(—e“)+O(I) (ma'oo)

and when m -0, we are led to (12).

The -above lemma involves W(f), i.e, a ,right-handed“
condition. It can be converted into a result mvolvi-ng w(f), i.e., a
.left-handed“ condition, by restating it-in terms of {s,}={- s,}.
It can also be modified so as to give the. followmg double-
conditioned result.

Lemma 2. Let }\n.;,i«-vl,,; Let W(H), w(t) be as already
defined. Then for 0<8<1I<], 4 ,

(19 25-tox (-0T-0-Dwe)- (I-e)w(‘)

)
(19) do-dox - (- e)s O=1) WQ) - (1-9)»»(%)
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Proof. If 'q<m<p; :

: Aptr - Mgwa Apr1  Agps
15 Pt g+ ( p 4
15) WSIPRL N WUl VPP v L

[Z(’\m—lv)(sv '-Sm)] [Mmyr

v=m+1

-/ S Gatr =) (5m=59) |
r=g+1 _
Let m be a member of an increasing sequence of integers
tending to o so that lim sn=s. Also, let.p, ¢ be membres of
two other increasing sequences, one p and one ¢ being associ-
ated with every m so that lim 2241 3 _0, fim Aot _ g0,
)»m+1 Amta

Then (15) yields (13) in the limit as m — .
(14) is derived from (13) by consxdermg{ s',,} instead
of {s,}. :
We can deduce from Lemma 1 the following result which
admlts of a generalization involving the k-t and (k+1)-tn

Riesz means (k=1,2,3,...). )

. an . ‘ H
N = - .{‘
. If, in Lemma 1, s, Za,, and o S T
then ., o '
(-5 £o-o, (s-6)° 2+ 5-0 .
4H - 4H -

But these relations are merely crude forms of the Fekete-Winn
inequalities (19), (20) contained in one of the theorems of the
next section.

4. These theorems furnish-an answer to the second ques-
tion raised at the outset. They together with Theorem 1 form
a group headed by Theorem A. -

p Theorem 2, Let )&,;+1~2\,, Let Za,, be bozmded R(}\m 1)
an

~ A .
(28) i T =t é F(Myi),

(® Minakshi Sundaram: [5]}
Publications de PInstitut Mathématique 3
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where F(x) is monotone “decreasing and

lim sup Max fF(E)déu Wr(2).

X=—w0 X xS

Then R |
(1e) ‘lf340~ﬂi+fWMm# (> 1),
0 ee-sz--05+ [WalL)ar ©<o<n.

R § .
Proof. For m> g,

: Am A

(18) "w“m qf(“)\m?j‘_l" )Sq'*“[zo\%f )‘V)(Sv Sq)]/xq-kh

v——q-l—l
n

where .we may suppose ihat Sp= 2“" and ¢, m are as in the

v=0 ;

proof of (11)
As in the proof of Theorem l

Appy

aéfﬂﬂw
Mgy
Ayt ey
w;( *)+00) (=)
Hencé the second member of the right sxde of (18)
- >\v+1 _
Z()\q«i-i Q-H) (Sy SQ)

v=g+1 v i : ‘ .
A o [Agaa) [Agss Agte ‘
< ( Cin I)W ( q+2‘)+,( +3_Lef2 1 leBS ) L
[ PIPER S bt Agt1 Agt e
[ welee) ]+
AgH1 Agt1

L
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As g¢— o, the last expression —-» f We(t)dt so that the rea-

somng employed in the proof of (11) now establishes (16)

(17) can be obtained in the same way. by refining the
proof. of (12).:

Corollary 2. If, in Theorem 2, F(x)——— then
(19) e(o—s)/H_ oHs_! é 0',
(20) FEMLS=5 4 .

H :

The proof of (19) depends on the fact that now Wg(¢)~
=Hlogt and (16) can be expressed in the form ®(A) <£0.
“Choosing A to the most advantage 1 e., so that @ (1) is maximum,
we obtain (19).

- The proof of (20) is similar.

Remark. It is obvious that Lemma 1 is only a crude
form of Theorem 2. Nevertheless, the proof of the lemma lays
bare the mechanism behind the proof of the theorem.

It is easy to state a theorem which is related to Theorem
- 2. in the same way that Corollary 1.2 is related to Theorem 1.
But this theorem is of less interest than the following double-
conditioned modification of Theorem 2.

Theorem 3. Let X\ pyy ~)\,,. Let Za, be" bounded R(\,, 1)
and : ‘

(2a) f(hapa) £

where F(x) is monotone decreasmg, f(x) is monotone increasing
and

n-+1 )

x'

' lim sup Max | F(5)d% = W (1),

x=0 xéx'ﬁtx

_ lim inf Min f F()d = ws(t).

Xx=c0 x‘x’étx
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Then, for 0<0<I1<XN,
- A

1
1) No—box (h=0)5— |wyt)dt - | we|L)dt,
o sz e ful

.

. . : l ) P 1 .
(22) ea—}&gée(}»-e)g_fwy(t)dg-—fw;(-;—)dt.
The proofs of (21) and (22) are refined out of the proofs
of (13) and (14) in the manner already indicated.

Corollary 3. If, in Theorem 3, F(x)--- arzdf(x)=—5 '
the most advantageous choice of \, ¢ in (21), (22) gives:

(23) k(eG-IIK _ 1)+ H(e~G-90 ~1) £ 0,
(24)- K(e=G-9/% _ 1)+ H(ge= —1) £ 0.
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