APPROXIMATION OF CONTINUOUS FUNCTIONS BY MONOTONE SEQUENCES OF POLYNOMIALS WITH INTEGRAL COEFFICIENTS

S. G. Gal

Abstract. The problem of approximation by polynomials with integral coefficients, is considered in several papers (e.g. [1-7], [19-24]). In [8-18] I have proved among other things that every $f \in C[a, b]$ can be uniformly approximated by two polynomial sequences $(Q_n)_n$ and $(P_n)_n$ such that $(Q_n)_n$ is monotonically increasing and $(P_n)_n$ is monotonically decreasing on [a, b]. The aim of this paper is to extend the ideas of [8-18] to the case of approximation by polynomials with integral coefficients.

1. Introduction. The problem of approximation by polynomials with integral coefficients is treated in several papers [1-7], [19-24]. Thus, for example, in [24] the following result is proved.

THEOREM 1.1. Let $0 < \alpha < 1$ and let us denote by $C[-\alpha, \alpha] = \{f : [-\alpha, \alpha] \rightarrow \mathbb{R}; f \text{ continuous on } [-\alpha, \alpha] \}$. Then $f \in C[-\alpha, \alpha]$ can be uniformly approximated by polynomials with integral coefficients iff f(0) is an integral number.

In several papers [8-18], I have proved, among other things, that every $f \in C[a,b]$ can be uniformly approximated by two polynomial sequences $(Q_n)_n$, $(P_n)_n$ such that $Q_n(x) < Q_{n+1}(x) < f(x) < P_{n+1}(x) < P_n(x)$, for all $x \in [a,b]$ and all $n \in \mathbb{N}$. In the present paper we will extend the ideas of [8-18] to the case of approximation by polynomials with integral coefficients.

2. Basic results. For $0 < \alpha < 1$, let us denote by $C_0^{\infty}[-\alpha, \alpha] = \{f \in C[-\alpha, \alpha] : f \text{ infinitely differentiable at } 0 \text{ and } f^{(n)}(0) = 0, n = 0, 1, \ldots\}.$

Remark. It is easily seen that $C_0^{\infty}[-\alpha, \alpha]$ is a linear subspace of $C[-\alpha, \alpha]$. For example, if $f(x) = \exp(-1/x^2)$, $x \in [-\alpha, \alpha]$, $x \neq 0$ and f(0) = 0, then $f \in C_0^{\infty}[-\alpha, \alpha]$.

THEOREM 2.1. For every $f \in C_0^{\infty}[-\alpha, \alpha]$, there exist two sequences of polynomials with integral coefficients $(Q_n)_n$ and $(P_n)_n$ such that

$$Q_n \xrightarrow{n} f, \quad P_n \xrightarrow{n} f \quad uniformly \ on \ [-\alpha, \alpha],$$

$$Q_n(0) = P_n(0) = f(0) = 0, \quad Q_n(x) < Q_{n+1}(x) < f(x) < P_{n+1}(x) < P_n(x),$$
 for all $x \in [-\alpha, \alpha], \ x \neq 0$ and all $n \in \mathbb{N}$.

Proof. For $f \in C_0^{\infty}[-\alpha, \alpha]$ and $n \in \mathbb{N}$ fixed, take $F_n(x) = f(x)/x^{2n}$, $x \in [-\alpha, \alpha]$, $x \neq 0$ and $F_n(0) = 0$. Since $f \in C_0^{\infty}[-\alpha, \alpha]$, we have:

$$\lim_{x\to 0} F_n(x) = \lim_{x\to 0} \frac{f'(x)}{2n \cdot x^{2n-1}} = \ldots = \frac{f^{(2n)}(0)}{(2n)!} = 0,$$

therefore $F_n \in C[-\alpha, \alpha]$, $F_n(0) = 0$. Taking into account Tehorem 1.1, there exists a polynomial $R_n(x)$ with integral coefficients such that $|F_n(x) - R_n(x)| < 1$, for all $x \in [-\alpha, \alpha]$. Hence

$$|f(x) - x^{2n} \cdot R_n(x)| \le x^{2n}, \quad \text{for all } x \in [-\alpha, \alpha].$$
 (1)

Take $S_n(x)=x^{2n}\cdot R_n(x)$, $Q_n(x)=S_n(x)-2K\cdot x^{2n}$ and $P_n(x)=S_n(x)+2K\cdot x^{2n}$, where K is a fixed integral satisfying $K>1/(1-\alpha^2)$. From (1) it is evident that $S_n\to f$ uniformly (when $n\to +\infty$) and therefore $Q_n\xrightarrow{n}f$, $P_n\xrightarrow{n}f$ uniformly on $[-\alpha,\alpha]$. Also, $Q_n(0)=P_n(0)=0$, for all $n\in \mathbb{N}$. Then by (1) we obtain

$$|S_n(x) - S_{n+1}(x)| \le |S_n(x) - f(x)| + |f(x) - S_{n+1}(x)| \le x^{2n} + x^{2n+1}$$

$$\le 2x^{2n} = 2 \cdot [1/(1-\alpha^2)] \cdot x^{2n} \cdot (1-\alpha^2)$$

$$\le 2K \cdot x^{2n}(1-\alpha^2) \le 2K \cdot x^{2n}(1-x^2),$$

for all $x \in [-\alpha, \alpha]$ and all n = 1, 2, ..., and therefore

$$Q_{n+1}(x) - Q_n(x) = S_{n+1}(x) - S_n(x) + 2Kx^{2n}(1-x^2) > 0,$$

for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and all $n = 1, 2, \ldots$ Also,

$$P_n(x) - P_{n+1}(x) = S_n(x) - S_{n+1}(x) + 2K \cdot x^{2n}(1-x^2) > 0,$$

for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and all $n = 1, 2, \ldots$ Finally, since $R_n(x)$ is a polynomial with integral coefficients, it is evident that $Q_n(x)$ and $P_n(x)$ are polynomials with integral coefficients.

Remark. This result does not remain valid for all $f \in C[-\alpha, \alpha]$ with f(0) an integer. One such example is the following. Let $f: [-\alpha, \alpha] \to \mathbf{R}$ be defined by f(x) = |x| for all $x \in [-\alpha, \alpha]$. Evidentily $f \in C[-\alpha, \alpha]$ and f(0) = 0 but f does not satisfy Theorem 2.1.

Indeed, if Theorem 2.1 held for the function f so defined, it would follow that there exists a sequence of polynomials with integral coefficients $(P_n)_n$, such that

 $P_n \to f$ uniformaly on $[-\alpha, \alpha]$, $P_n(0) = 0$, n = 1, 2, ..., and $|x| < P_{n+1}(x) < P_n(x)$ for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and n = 1, 2, ... For x > 0, we obtain $|x|/x < P_n(x)/x$, wherefrom

$$\lim_{x \searrow 0} \frac{|x|}{x} = 1 \le \lim_{x \searrow 0} \frac{P_n(x)}{x} = P'_n(0).$$

Also, for x < 0 we have $|x|/x > P_n(x)/x$, wherefrom

$$\lim_{x \neq 0} \frac{|x|}{x} = -1 \ge \lim_{x \neq 0} \frac{P_n(x)}{x} = P'_n(0),$$

contradiciting the previous inequality $1 \leq P'_n(0)$.

Analogously to Corollary 1.3 of [12] we have

THEOREM 2.2. For every $f \in C_0^{\infty}[-\alpha, \alpha]$, there exists a sequence of polynomials with integral coefficients $(T_n)_n$, uniformly convergent to f on $[-\alpha, \alpha]$ and satisfying $T_n(0) = f(0) = 0$, $n = 1, 2, \ldots$,

$$f(x) < T_{n+1}(x) < T_n(x), \qquad T_{n+2}(x) - 2T_{n+1}(x) + T_n(x) > 0,$$

for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and all n = 1, 2, ...

Proof. Let $P_n(x)$ be the polynomial defined in the proof of Theorem 2.1 and let $T_n(x) = P_n(x) + K \cdot A \cdot x^{2n}$, where A is an integral satisfying $A > 4/(1 - \alpha^2)$ (and K is defined in the proof of Theorem 2.1). Evidently $T_n(x)$ is a polynomial with integral coefficients, $T_n(0) = 0 = f(0)$, $n = 1, 2, \ldots$, and taking into account that $P_n(x) \setminus f(x)$ for $x \in [-\alpha, \alpha]$, $x \neq 0$, we obtain $T_n(x) \setminus f(x)$, $x \in [-\alpha, \alpha]$, $x \neq 0$. Then,

$$T_{n+2}(x) - 2T_{n+1}(x) + T_n(x) = P_{n+2}(x) - 2P_{n+1}(x) + P_n(x) + KAx^{2n}(1-x^2)^2$$

$$> P_{n+2}(x) - 2P_{n+1}(x) + P_n(x) + 4Kx^{2n}(1-x^2)/(1-\alpha^2)$$

$$\geq P_{n+2}(x) - 2P_{n+1}(x) + P_n(x) + 4Kx^{2n}(1-x^2),$$

for all $x \in [-\alpha, \alpha]$, and all n = 1, 2, ..., (since $(1 - x^2)/(1 - \alpha^2) \ge 1$, for all $x \in [-\alpha, \alpha]$). Consequently

$$T_{n+2}(x) - 2T_{n+1}(x) + T_n(x) > P_{n+2}(x) - 2P_{n+1}(x) + P_n(x) + 4Kx^{2n}(1-x^2), (2)$$

for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and all $n = 1, 2, \ldots$

Now, since $(P_n)_n$ is monotonically decreasing we have

$$|P_{n+2}(x) - P_{n+1}(x) + P_n(x) - P_{n+1}(x)| \le \max\{|P_{n+2}(x) - P_{n+1}(x)|, |P_n(x) - P_{n+1}(x)|\},$$

where

$$|P_n(x) - P_{n+1}(x)| = |S_n(x) - S_{n+1}(x) + 2Kx^{2n}(1 - x^2)|$$

$$\leq |S_n(x) - S_{n+1}(x)| + 2Kx^{2n}(1 - x^2) < 4Kx^{2n}(1 - x^2),$$

for all $x \in [-\alpha, \alpha]$, $x \neq 0$ (taking into account the proof of Theorem 2.1). Hence

$$|P_{n+2}(x) - P_{n+1}(x)| < 4Kx^{2(n+1)}(1-x^2) < 4Kx^{2n}(1-x^2), \quad x \in [-\alpha, \alpha], \ x \neq 0$$

and consequently $|P_{n+2}(x)-2P_{n+1}(x)+P_n(x)| < 4Kx^{2n}(1-x^2)$, for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and $n = 1, 2, \ldots$

In conclusion, by (2), we have $T_{n+2}(x) - 2T_{n+1}(x) + T_n(x) > 0$, for all $x \in [-\alpha, \alpha]$, $x \neq 0$ and all $n \in \mathbb{N}$. This completes the proof of Theorem 2.2.

Remark. It is known that if $\alpha - \beta > 4$ and $f \in C[\beta, \alpha]$ is not a polynomial with integral coefficients, then f cannot be uniformly approximated on $[\beta, \alpha]$ by polynomials with integral coefficients (see [7]). But if $0 < \beta < \alpha < 1$, then it can be proved that Theorem 2.1 is valid for any $f \in C[\beta, \alpha]$. Indeed, for $f \in C[\beta, \alpha]$, let us define $f_1 : [-\alpha, \alpha] \to \mathbb{R}$ by $f_1(x) = f(x)$, $x \in [\beta, \alpha]$ and $f_1(x) = f(\beta)x/\beta$, $x \in [-\alpha, \beta)$. It is easily seen that $f_1 \in C[-\alpha, \alpha]$ and $f_1(0) = 0$.

Taking into account Theorem 1.1, there exists a polynomial sequence $R_n(x)$, with integral coefficients such that $|f_1(x) - R_n(x)| < \beta^{2n}(1-\alpha^2)$, for all $x \in [-\alpha, \alpha]$ and all $n = 1, 2, \ldots$ Since $\beta^{2n} \leq x^{2n}$ and $1 - \alpha^2 \leq 1 - x^2$ for all $x \in [\beta, \alpha]$, we obtain $|f(x) - R_n(x)| < x^{2n}(1-x^2)$, $x \in [\beta, \alpha]$, $n = 1, 2, \ldots$, wherefrom

$$|R_n(x) - R_{n+1}(x)| \le |R_n(x) - f(x)| + |f(x) - R_{n+1}(x)|$$

$$< x^{2n}(1 - x^2) + x^{2(n+1)}(1 - x^2) < 2x^{2n}(1 - x^2),$$

for all $x \in [\beta, \alpha]$ and all $n = 1, 2, \ldots$

Denoting $Q_n(x) = R_n(x) - 2x^{2n}$ and $P_n(x) = R_n(x) + 2x^{2n}$, it is easily seen that the conclusion of Theorem 2.1 is satisfied.

REFERENCES

- [1] S.N. Bernstein, Sobranie Sočinenij I, AN SSSR, 1952, p.p. 468-471 and 517-519.
- [2] G. St. Dénéva, Sur l'approximation des fonctions continues par des polynômes à coefficients entiers, Mathematica (Cluj) 23 (46) (1981), 193-196.
- [3] G.St. Dénéva, Sur l'approximation des fonctions continues par des polynômes à coefficients entiers par rapport à ceratins de leurs zéros, donnés à l'avance, Mathematica (Cluj) 27 (52) (1985), 119-122.
- [4] M. Fekete, Approximation par polynômes avec conditions diophantienes, I et II, C. R. Acad. Sci. Paris 239 (1954), 1337-1339 et 1445-1447.
- [5] L. B. O. Ferguson, Uniform approximation by polynomials with integral coefficients, I, Pacific J. Math. 26 (1968), 53-59.
- [6] L.B.O. Ferguson, Uniform approximation by polynomials with integral coefficients, II, Pacific J. Math. 26 (1968), 273-281.
- [7] L.B.O. Ferguson, Some remarks on approximation by polynomials with integral coefficients, in: Approximation Theory, Proc. Symp. Lancaster, July, 1969, ed. A. Talbot), Academic Press, 1970.
- [8] S.G. Gal, Sur les théorèmes d'approximation de Weierstrass, Mathematica (Cluj) 23 (46) (1981), 25-30.
- [9] S.G. Gal, Sur le théorème d'approximation de Stone-Weierstrass, Studia Univ. "Babes-Bolyai" (Cluj), 26 (1981), 4, 33-39.

- [10] S.G. Gal, Sur l'approximation par des polynômes dans C^p[0,1], Studia Univ. "Babes-Bolyai" (Cluj) 27 (1982), 57-60.
- [11] S.G. Gal, On the approximation by polynomials in C^Q[0,1], J. Approx. Theory 42 (1984), 1, 27-29.
- [12] S.G. Gal, Sur les ensembles denses dans quelques espaces de fonctions réelles, Mathematica (Cluj) 26 (49) (1984), 1, 45-51.
- [13] S.G. Gal, Sur l'approximation des fonctions semi-continues par des suites de polynômes, Studia Univ. "Babes-Bolyai" 30 (1985), 5-8.
- [14] S.G. Gal, Dense linear subspaces in L^p(E), Rend. Mat. (Roma) (ser. VII), 6 (1986), 125-130.
- [15] S.G. Gal, Approximation of continuous functions by monotone sequences of polynomials with restricted coefficients, Publ. Inst. Mat. (Beograd), (N.S.) 44 (58) (1988), 45-48.
- [16] S.G. Gal, Approximation of real-valued functions by monotone sequences of polynomials, "Babes-Bolyai" Univ. Faculty of Math. and Physics, Research Seminars, Seminar on Math. Analysis, Preprint No. 7, 1988, 55-64.
- [17] S.G. Gal, Approximation in L^p[a,b] by sequences having certain properties of global monotony and applications to Fourier series, "Babes-Bolyai" Univ. Faculty of Math. and Physics, Research Seminars, Seminar on Math. Analysis, Preprint No. 7, 1989, 61-68.
- [18] S.G. Gal, Constructive approximation by monotonous polynomial sequences in $\operatorname{Lip}_M \alpha$ with $\alpha \in (0,1]$, J. Approx. Theory (1989) (to appear).
- [19] S. Kakeya, On approximate polynomials, Tôhoku Math. J. 6 (1914-1915) 182-186.
- [20] V. Kantorovič, Neskol'ko zamečaniš o približenii k funkciyam posredstvom polinomov s celymi koefficientami, Izv. AN SSSR, 1931, 1163-1168.
- [21] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Mathem. 53 (1857), 173-175.
- [22] E. Hewitt, H.C. Zuckerman, Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, Duke Math. J. 26 (1959), 305-324.
- [23] Y. Okada, On approximate polynomials with integral coefficients only, Tôhoku Math. J. 23 (1923), 26-35.
- [24] J. Pál, Zwei Kleine Bemerkungen, Tôhoku Math. J. 6 (1914-1915), 42-43.

Technical University Department of Mathematcs-Physics Str. Armatei Roşii, Nr. 5 3700 Oradea, Romania (Received 21 12 1989)