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REPRESENTATIONS OF MONOTONIC FOURIER COEFFICIENTS
IN TAUBERIAN L..CONVERGENCE CLASSES*

V. B. Stanojevié

Abstract. It is proved that for real even monotonic Fourier coefficients {f(n)} of func-
tions in L', the Tauberian condition (1}, EE{:TL.-H |kl?=*|Af(k)|? finite, for A > 1 and
p € (1,2], is equivalent to the existence of a O-regularly varying sequence {R{n)} such that

- — 1} = 1)i/>
jomy= g, BRUECD =D Ly tagg =1

The Tauberian approach to L! convergence problems of Fourier series and the
LP methods led to wide L!-convergence classes. Let f € L'(T), T = R/27Z, and
let L be the sequential dual of L!, i.e. the sequence space of Fourier coefficients of
functions in L'. A subclass K of L! is called L!-convergence class if {f(n)} € K
implies that

(1) “Sﬂ(f)"f” :0(1)’ n - 00,
is equivalent to
(2) f(m)lglnl=o(1),  |n]— o0,

where S,(f) = Sa(f,) = Liri<n f(k)e'**, and where || - || denotes L!-norm.

A very general L!-convergence class is obtained by C. V. Stanojevié [1], and
is defined as
[An]
s p_l ~ p .
(3) llgn!k‘z:+l [eP~HAf(R)P finite, for A > 1,

where p €-(1,2]. A special case of (3) is

[An]
(4) Aﬁﬁa‘i,{“ngﬂ kPt Af(k)P =0,
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found earlier in [2].
There is an important common example for conditions (3) and (4), i.e.

(5) nAf(n) = 0(1), n— co.

A simple “limiting case” of (4) that follows from straight forward estimations,
instead of LP-techniques, is

]
(6) \ BI& h’gnwg;ﬂ |Af(k)|1gk = 0.

Notice that the analogous example to example (5) for condition (6) is of the form
nlgn)Af(n) = 0(1), n— oo,

which indicates the crudeness of the condition (6).

The concept of sequential monotonicity in the complex plane has been in-
troduced in [3, 4, 5] and studied in relation with conditions (3) and (4). In the
real case the relation between monotonicity and the above Tauberian conditions
has not been studied. In this paper I shall show that real monotonic even Fourier
coefficients {f(n)}, satisfying above Tauberian conditions, have a representation in
terms of regularly varying sequences in the sense of Karamata [6]. For succinct
formulations of my results I need the following definitions.

___Definition 1. A sequence {R(n)} of positive numbers is O-regularly varying
if limy, R([An])/R(n) is finite, for A > 1.

Definition 2. A sequence {R(n)} of positive numbers is *-regularly varying if
liI’HA._.1+o llm@; R({An})/R(n) =1

THEOREM 1. Let {f(n)} be a real even monotonically decreasing sequence of
Fourier coefficients of f € L'(0, 7). Then (3) holds if and only of there exists a
nondecreasing O-regularly varying sequence {R(n)} such that

00 oy 1\e
f(n)zz(R(k)/R(k H-1) 11

-+ -=1  n>ng.

) e s

k=n
Proof. Assume that (7) is valid. Then

Af(n) = f(n) = f(n+1)

____i(R(k)/R(k—l)-—l)“"__ > (R(E)/R(k=1) = 1)'/*

1 1
k=n k /e k=n41 k /e

_ (Rm)/R(n—=1) - )7

nlfq '
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or n?~Y(Af(n))? = R(n)/R(n — 1) — 1. Hence, for A > 1,

[n] D]
S er@iwr= Y (mds-1)

k=n+1 k=n+1
An A
< 10 (; O 1) ] R RO
- k=n+1 R(k - 1) k=n+1 R(k - 1) R(n)
Taking the limit superior of both sides of the last inequality we get
[An)
i 1A f =— R([An])
p-1 P < .
h’r‘nkZ;llc (Af(k)P < Tim R

Since the right hand side is finite for A > 1, we have that (3) holds. Suppose that
(3) holds. Define R(n) = [Ti-,[L + k?~}(Af(k))"]. Let A > 1. Then from

{An] [An]

I [+ i=afwy] oo 3w @f®Y).

k=n+1 k=n+1

R(An)) _
R(n)

it follows that {R{n)} is O-regularly varying, and that
(R(n)/R(n — 1)~ 1)""*

nl/q

Af(n) =
Since {f(n)} is a null sequence it follows that the series

< (R(k)/R(k-1)-1)""
Z kl/q

k=1
is convergent, and the representation (7) follows. This concludes the proof of The-
orem 1.

THEOREM 2. Let {f(n)} be a real even monotonically decreasing sequence of
Fourier coefficients of f € L1(0,7). Then (4) holds if and only if there exists a
nondecreasing *-reqularly varying sequence {R(n)} such that

. < (R(k)/R(k - 1) —1)"/"
oy = 3 VA=) =)

1
10) ;Z- +-=1, n>ng.

3

k=n

The proof of Theorem 2 as well as the proof of the next theorem follow the
lines of the proof of Theorem 1.

THEOREM 3. Let {f(n)} be a real even monotonically decreasing sequence of
Fourier coefficients of f € L*(0,7). Then (6) holds if and only if there ezists a
nondecreasing x-regularly varying sequence {R(n)} such that

. 2 (R(k)/R(k-1)-1

(11)

n>1

k=n
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Notice that in all these theorems the building blocks of the representation
of monotonic Fourier coefficients, satisfying Tauberian conditions, undergo certain
restrictions due to the representation form of f(n) as the remainders of certain
convergent series. For instance, R(n) = n cannot serve as an appropriate sequence
in Theorem 3, because the series

Z(Ic—l)lglc

does not converge. However, R(n) = lgn is an admissible sequence in Theorem 3,

for
= (lgk/lg(k —1) - 1)
) m

k=2
is a convergent series. Similar restrictions on the rate of growth of { R(n)} occur in
Theorem 1 and Theorem 2.

It is plain that Theorem 1 and Theorem 2 are valid for p > 1 and that all
three theorems are valid for any monotonically decreasing null sequences.

The above results show that in spite of sophisticated condition {3) and (4),
corresponding L!-convergence classes do not include all monotonic Fourier coef-
ficients. Moreover, Theorem 1 and Theorem 2 show that in the corresponding
L*-convergence classes we can have only those monotonic sequences which have
the form (7) and (10). Concerning Theorem 3 it is quite evident that the L!-
convergence class defined by the condition (3) cannot contain all monotonic Fourier
coefficients. It contains only those of the form (11).

From the above analysis it follows that the regularity conditions on the Fourier
coefficients are much more delicate than the conditions obtained through robust L?-
methods (or the naive estimations such as in Theorem 3).

In conclusion, the work of Telyakovskii and Fomin [7], and the consequent sub-
stential generalization of it [8], demonstrate that regularity conditions on Fourier
coefficients are independent of LP-methods and point out a direction of research in
the theory of L!-convergence that is far from being foreclosed.

The author wishes to express profound gratitude to Professor D. Adamovié
for his advice and guidance.
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