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COMPLETENESS THEOREM FOR A MONADIC LOGIC

WITH BOTH FIRST-ORDER AND PROBABILITY QUANTIFIERS

Miodrag Ra�skovi�c and Predrag Tanovi�c

Abstract. We prove a completeness theorem for a logic with both probability and �rst-
order quanti�ers in the case when the basic language contains only unary relation symbols.

Let A � HC be an admissible set which contains in�nite ordinals and let L
be a nonempty A-recursive language which contains only unary relation symbols;
HC denotes, as usual, the set of hereditarily countable sets.

De�nition 1. The set of formulas of (L!P9)AP is the least set such that:
(i) each atomic formula of �rst-order logic without equality symbol is a formula
of (L!P9)AP ; (ii) if ' is a formula, then :' is a formula; (iii) if � 2 A is a set
of formulas, then ^� is a formula; (iv) if ' is a �nite formula, then (9vn)' is a
formula; (v) if ' is a formula and r 2 A \ [0; 1], then (Px � r)' is a formula.

Abbreviations (Px � r), (Px = r) and (8vn) are introduced as usual.

De�nition 2. A probability structure for L is a structure (A; �) where A is
a �rst-order structure for L (with universe A), and � is a �-additive probability
measure on A such that each relation of A is �-measurable.

We can de�ne in the usual way satisfaction relation in a probability structure;
here �n denotes the n-fold product of �'s.

Thus: (A; �) � (Px � r)'(x; a) i� �n
�
b 2 An j (A; �) � '(b; a)

	
� r.

The axioms for (L!P9)AP are the axioms A1{A6 and B1{B6 from [K] with
the usual �rst-order axioms. The rules of inference are the rules R1{R3 from [K]
with the usual �rst-order generalization added.

SOUNDNESS THEOREM. If the set � of sentences of (L!P9)AP has a model,

then it is consistent.

LEMMA 1. Each (L!P9)AP sentence is (L!P9)AP -equivalent to a �-Boolean

combination of �nite sentences.
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Proof . The proof can be obtained in the similar way as the proof of the
Normal Form Theorem from [H2]. So we omit it.

The notion of a weak structure (A; �n)n2! can be introduced as in [H1].

LEMMA 2. A sentence of (L!P9)AP is consistent if and only if it has a weak

model in which each theorem of (L!P9)AP is true.

Proof . Hoover's modi�cation of Henkin's argument (see [H1]) would work.

LEMMA 3. Let (A; �n)n2! be a weak structure, '(x;y) a �nite (L!P9)HC P -
formula and b 2 Am. Then there is a quanti�er free formula �(x) such that:

(A; �n)n2! � (8x)
�
'(x;b) () �(x)

�
.

Proof . We use induction on the complexity of '. If ' is atomic the statement
is trivial. The inductive step when ' is a propositional combination of formulas of
smaller rank is also trivial. Suppose now that ' is of the form (Pz � r) (x; z). By
the inductive assumption we may assume that  is a �nite quanti�er free formula.
Further, suppose that x is (x0; x1; . . . ; xn) and that all relational symbols which

occur in  are R0; R1; . . . ; Rk. Now de�ne: �(v) =
�V

fR
f(i)
i (v) j 0 � i � kg

�� f 2
2k+1

	
.

Let �(x) be the set of all formulas of the form
^�

�i(xi) j 0 � i � n
	
�i(xi) 2 �(xi)

for which there exists a0; a1; . . . ; an 2 A with: (A; �n)n2! � �i(ai) for 0 � i � n,
and (A; �n)n2! � (Pz � r) (a; z). Finally let �(x) be the formula _�(x). It is
straightforward to check that the following holds:

(A; �n)n2! � (8x)
�
'(x;b) () �(x)

�
:

The case when ' is of the form (9z) (x; z) can be dealt with in the same way as
the previous one, so the claim of the lemma is established.

COROLLARY 1. Let (A; �n)n2! be a weak probability structure.

(a) If B � An is de�nable by a �nite formula, with parameters from A, then

B is n�1 measurable; here by n�1 we denote the �nitely additive n-product of �1's.

(b) If B � An is de�nable by a formula, possible in�nite with parameters

from A, and �n is �-additive then B is �n1 -measurable.

Thus, the corollary allows us to identify (A; �1) with (A; �n)n2! when only
�nite formulas are considered.

COROLLARY 2. Let (A; �n)n2! be a weak probability structure. Then for every

�nite (L!P9)HC P -formula '(x;y) with parameters from A, the set
�
n�1fb 2 A

n j

(A; �1) � '(b; a)g j a 2 A
m
	
is �nite.

COMPLETENESS THEOREM. A sentence ' of (L!P9)AP is consistent if and only

if it has a probability model.
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Proof . The nontrivial part is to prove that 0 ' implies 2 ', so suppose 0 '.
By Lemma 2 there is a weak structure (A; �n)n2! which is a model for :' and every
axiom. By Lemma 1 it is enough to �nd a probability structure (B; �) which is a
model for all �nite (L!P9)AP sentences which hold in (A; �n)n2!. To do that we
will use Ra�skovi�c's method from [R]. Let K = L [C ((K!P9)AP ) be the language
(logic) introduced in Hoover's construction [H1], where C is a countable set of new
constant symbols and C 2 A.

Now, we introduce a language M with three sorts of variables. Let
X;Y; Z; . . . be variables for sets, x0; x1; . . . variables for urelements and r; s; . . .
variables for reals from [0; 1]. We suppose that predicates of our language are
En(x0; x1; . . . ; xn�1; X) for n � 1 (with a canonical meaning (x0; x1; . . . ; xn�1) 2
X) and �(X; r) (with a meaning �(X) = r). For each �nite (K!P9)HC P -formula
we have a constant symbol A' for a set, for each real number r 2 [0; 1] a constant
symbol r, and a set D of new constant symbols of the cardinality of the continuum.
Functional symbols are + and � for reals.

Let T be the �rst order theory with the following list of axioms:

(1) (8X)
V
n<m :(9x;y)(Em(x;y; X) ^ En(x; X)), where fxg \ fyg = ?.

(2) Axioms of extensionality: (8x)(En(x; X) () En(x; Y )) () X = Y .

(3) Axioms of satisfaction:

(a) (8x)
�
En(x; A') ()

V
 2� En(x; A')

�
for ' is ^�, � �nite;

(b) (8x)
�
En(x; A') () :En(x; A )

�
for ' in : .

(c) (8x)(En(x; A') () (9y)En(x;y; A )) for ' is (9y) ;

(d) (8x)
�
En(x; A') () (91X)(�(X; r'1 ) _ �(X; r

'
2 ) _ . . . _ �(X; r'n) ^

(8y)(En+m(x;y; A ) () Em(y; X)))
�
for ' is (Px � r) where

r
'
1 ; r

'
2 ; . . . ; r

'
k are all reals from the set
�
n�1fb 2 A

n j (A; �1) �  (b; a)g
�� a 2 Am

	
(�)

(4) Axioms of additivity:

(a) (8X)(91r)�(X; r)

(b) (8X)(8Y )
�
:(9x)(En(x; X) ^ En(x; Y )) =) (9Z)((9x)En(x; Z) ^

(8x)((En(x; Z) () (En(x; X)_En(x; Y ))^�(Z; r+ s)))
�
for n 2 !.

(5) Axioms which are transformations of �nite axioms of (K!P9)HC P :
(8x)En(x; A') where ' is a �nite axiom.

(6) Sets of axioms which ensures �-additivity of extended measure:
�
En(d; A')

	
[
�
:En(d; A'm) j m 2 !

	

where f'm j m 2 !g is a sequence of �nite formulas, d is a tuple of di�erent constant
symbols fromD and all such tuples for a di�erent sequences of formulas are pairwise
disjoint,

�
fa 2 An j (A; �) � 'm(a)g

�� m 2 !
	
is a monotone increasing sequence

of subsets of An, (A; �) � (8x)('m(x) =) '(x)) and

�
��
a 2 An

�� (A; �) � '(a)
	�

> sup
�
�
�
fa 2 An j (A; �1) � 'm(a)g

�	
m 2 ! (��)
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(7) Axioms of a �eld (for real numbers) with a diagram for + and �.

Let a standard structure for the �rst order logic for M be the struc-
ture M =

�
M;B; F;EMn ; �M;+; �; dM; AM' ; r

�
n�1; '2S; r2F; d2D

(for short, M =

(M;B; F;A')S), where B �
S
n�1 P(M

n), F = F 0 \ [0; 1], F 0 � R a �eld,

EMn � Mn � B, �M : B ! F , +; � : F 2 ! F , dM 2 M , AM' 2 B and

S �
�
' 2 (L!P9)HC P j ' is �nite

	
.

We claim that T is consistent. To prove the claim it is enough, by compact-
ness, to show that all �nite subtheories of T are consistent.

First, note that a weak structure can be transformed to a standard structure
by taking:

AM' =
�
a 2Mn j (A; �) � '(a)

	
; B =

�
A' j ' 2 (K!P9)HC P is �nite

	
;

and arbitrarily interpeting constants from D, we may get a model for a �xed �nite
subtheory of T .

Let T 0 be a �nite subtheory of T and let ', f'n j n 2 !g be as in the axiom
6. Pick some m 2 ! such that :En(d; A'k) 2 T 0 for all k � m. By (��) we may

choose dM 2
�
a 2 Mn j (A; �1) � '(a)

	
n
S
i<m

�
a 2Mn j (A; �1) � 'i(a)

	
. Thus

we get a model for T 0.

Since every �nite subtheory T 0 � T has a model, by compactness, we conclude
that T has a model, say M. Now we can transform our model M to a probability
structure with a �rst order part B. For a relational symbol R of the language L
we de�ne relation RB = fx 2 M j EM1 (x)g, and a �nitely additive measure � on
the ring fA' j ' is �niteg with: �(A') = r i� �(A'; r) holds in M = (M; . . . ).

Note that axiom 3d ensures � to map fA' j ' is �niteg into the reals. Axiom
6 allows us to apply Karatheodory's Theorem to the measure (fA' j ' is �niteg; �).
Thus � can be extended to a �-additive measure � on the �-ring which extends
fA' j ' is �niteg. Let � be the �-additive extension of �. It is straightforward to
check that (B; �) is a probability structure which satis�es the same �nite (L!P9)AP
sentences as (A; �1) does. That �nishes a proof of the theorem.
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