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COMPLETENESS THEOREM FOR A MONADIC LOGIC
WITH BOTH FIRST-ORDER AND PROBABILITY QUANTIFIERS

Miodrag Raskovié¢ and Predrag Tanovié

Abstract. We prove a completeness theorem for a logic with both probability and first-
order quantifiers in the case when the basic language contains only unary relation symbols.

Let A C HC be an admissible set which contains infinite ordinals and let L
be a nonempty A-recursive language which contains only unary relation symbols;
HC( denotes, as usual, the set of hereditarily countable sets.

Definition 1. The set of formulas of (L,p3)ap is the least set such that:
(i) each atomic formula of first-order logic without equality symbol is a formula
of (Ly,p3)ap; (ii) if ¢ is a formula, then —¢p is a formula; (iii) if ® € A is a set
of formulas, then A® is a formula; (iv) if ¢ is a finite formula, then (Ju,)e is a
formula; (v) if ¢ is a formula and r € AN [0, 1], then (Px > r)p is a formula.

Abbreviations (Px <r), (Px =r) and (VYv,) are introduced as usual.
Definition 2. A probability structure for L is a structure (2, u) where 2 is

a first-order structure for L (with universe A), and u is a o-additive probability
measure on A such that each relation of 2 is o-measurable.

We can define in the usual way satisfaction relation in a probability structure;
here p™ denotes the n-fold product of u’s.

Thus: (A, p) E (Px > r)p(x,a) iff u"{b € A" | (A, p) F ¢(b,a)} >r.

The axioms for (L, p3)ap are the axioms A1-A6 and B1-B6 from [K] with

the usual first-order axioms. The rules of inference are the rules R1-R3 from [K]
with the usual first-order generalization added.

SOUNDNESS THEOREM. If the set ® of sentences of (L,p3)ap has a model,
then it is consistent.

LemMA 1. Each (L, p3)ap sentence is (L, p3) ap-equivalent to a o-Boolean
combination of finite sentences.

AMS Subject Classification (1985): Primary 03 C 70



2 Raskovi¢ and Tanovié

Proof. The proof can be obtained in the similar way as the proof of the
Normal Form Theorem from [H2]. So we omit it.

The notion of a weak structure (2, ftn)ne, can be introduced as in [H1].

LeMMA 2. A sentence of (L,p3)ap is consistent if and only if it has a weak
model in which each theorem of (L,p3)ap is true.

Proof . Hoover’s modification of Henkin’s argument (see [H1]) would work.

LemMA 3. Let (A, tin)new be a weak structure, p(x,y) a finite (L,p3)nc p-
formula and b € A™. Then there is a quantifier free formula ®(x) such that:

(Qlalhz)nEw = (VX) (‘P(va) — fl)(x)),

Proof. We use induction on the complexity of p. If ¢ is atomic the statement
is trivial. The inductive step when ¢ is a propositional combination of formulas of
smaller rank is also trivial. Suppose now that ¢ is of the form (Pz > r)¢(x,z). By
the inductive assumption we may assume that v is a finite quantifier free formula.
Further, suppose that x is (xg,x1,.-. ,%,) and that all relational symbols which
occur in ¢ are Ry, Ry, ... , R;. Now define: I'(v) = {/\{Rf(l)(v) |0<i<k}|fe
ok+1 } .

Let X(x) be the set of all formulas of the form

N{®i(x:) [0 < i <n}®i(w;) € T(xs)

for which there exists ag, a1, ... ,an, € A with: (A, un)new F Pi(a;) for 0 < i < n,
and (A, n)new F (Pz > r)(a,z). Finally let ®(x) be the formula VE(x). It is
straightforward to check that the following holds:

(le ,Ufn)nEw = (VX) (‘P(Xab) — (I)(X))-

The case when ¢ is of the form (3z)y(x,z) can be dealt with in the same way as
the previous one, so the claim of the lemma is established.

CoRrROLLARY 1. Let (A, pn)new be a weak probability structure.
(a) If B C A™ is definable by a finite formula, with parameters from A, then
B is ™y measurable; here by "y we denote the finitely additive n-product of uy’s.

(b) If B C A™ is definable by a formula, possible infinite with parameters
from A, and p, is o-additive then B is u-measurable.

Thus, the corollary allows us to identify (2, 1) with (2, 4 )new when only
finite formulas are considered.

COROLLARY 2. Let (U, pin)new be a weak probability structure. Then for every
finite (L, p3)uc p-formula o(x,y) with parameters from A, the set {",ul{b € A" |
(A, 1) Ep(b,a)} |a€ A™} is finite.

COMPLETENESS THEOREM. A sentence ¢ of (L, p3)ap is consistent if and only
if it has a probability model.
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Proof. The nontrivial part is to prove that ¥ ¢ implies ¥ ¢, so suppose ¥ .
By Lemma 2 there is a weak structure (2, f,)new which is a model for —¢ and every
axiom. By Lemma 1 it is enough to find a probability structure (*8,v) which is a
model for all finite (L, p3)4p sentences which hold in (2, py)new- To do that we
will use Ragkovié’s method from [R]. Let K = LUC ((K,p3)ap) be the language
(logic) introduced in Hoover’s construction [H1], where C is a countable set of new
constant symbols and C' € A.

Now, we introduce a language M with three sorts of variables. Let

X,Y,Z,... be variables for sets, xg,x1,... variables for urelements and r,s,...
variables for reals from [0,1]. We suppose that predicates of our language are
E,(zo,z1,... ,2p-1,X) for n > 1 (with a canonical meaning (zg,x1,... ,Zp_1) €

X) and p(X,r) (with a meaning u(X) = r). For each finite (K, p3)mgc p-formula
we have a constant symbol A, for a set, for each real number r € [0,1] a constant
symbol r; and a set D of new constant symbols of the cardinality of the continuum.
Functional symbols are + and - for reals.

Let T be the first order theory with the following list of axioms:

(1) (VX) Ay ~(3%,¥) (Em (x,5, X) A En(x, X)), where {x} N {y} =@

(2) Axioms of extensionality: (Vx)(E,(x,X) < E,(x,Y)) < X =Y.

(3) Axioms of satisfaction:

(a) (Vx)(E.(x,4,) < Nyeo E,(x,A,)) for ¢ is A®, ® finite;

(b) (Vx)(En(x,4,) <= —E,(x,A4y)) for ¢ in —p.

(c) (VX)(En(x,4y) <= (Ty)En(x,y, Ay)) for ¢ is (Jy)¢;

(@) (V) (En(x,4,) = (GX)X,r)) VX, ) V..oV p(X,rg) A
() (s (6,9, Ay) <= En(y, X)))) for ¢ is (Px > r) where
r{,ry,...,ry are all reals from the set

{"m{b e A" | (A m)Fp(b,a)} |ac A™} (%)

(4) Axioms of additivity:
(a) (VX)Fr)u(X,r)
(b) (YX)(VY)(=(3x)(En(x, X) A En(x,Y)) = (3Z)((3x)En(x,2) A
(Vx)((En(x,2) <= (En(x,X)VE,(x,Y))Apu(Z,r+5)))) forn € w.
(5) Axioms which are transformations of finite axioms of (K,p3)mc p:
(Vx)En(x, A,) where ¢ is a finite axiom.
(6) Sets of axioms which ensures o-additivity of extended measure:

{En(d,Ap)} U{=En(d,A,,) |mew}
where {¢, | m € w} is a sequence of finite formulas, d is a tuple of different constant
symbols from D and all such tuples for a different sequences of formulas are pairwise
disjoint, {{a € A™ | (A, p) E pm(a)} | m € w} is a monotone increasing sequence
of subsets of A”, (A, u) F (Vx)(pm(x) = ¢(x)) and
p({a€A™ (A ) Foa)})

> sup{u({a € A" | (A ) F om(a)})} meEw (xx)
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(7) Axioms of a field (for real numbers) with a diagram for + and -.

Let a standard structure for the first order logic for M be the struc-
ture M = (M,B,F,Eflj‘,ufm,ﬂ-,dm,Ag‘,r)nﬂy(pes’reﬂdel) (for short, 9 =
(M,B,F,A,)s), where B C {J,~, P(M"), F = F'n[0,1], F' C R a field,
E,?‘gM”xB,uW:B—)F,—k,-:Fz%F,dWEM,AiﬁEBand
S C{p € (Lupa)ucp | ¢ is finite}.

We claim that 7T is consistent. To prove the claim it is enough, by compact-
ness, to show that all finite subtheories of T' are consistent.

First, note that a weak structure can be transformed to a standard structure
by taking:

Agm {aEM”|(Qlu 'Zcp } B = {A¢|(p6( wPEI)HCP isﬁnite},

and arbitrarily interpeting constants from D, we may get a model for a fixed finite
subtheory of T'.

Let T' be a finite subtheory of T' and let ¢, {¢, | n € w} be as in the axiom
6. Pick some m € w such that -F, (d A,,) € T' for all k > m. By (s*) we may
choose d™ € {a € M™ | (A, 111) F p(a }\UKm{a € M™ | (A, 1) E pi(a)}. Thus
we get a model for T".

Since every finite subtheory 7' C T has a model, by compactness, we conclude
that 7" has a model, say 9. Now we can transform our model 9 to a probability
structure with a first order part 8. For a relational symbol R of the language L
we define relation R® = {z € M | E?(z)}, and a finitely additive measure 7 on
the ring {A, | ¢ is finite} with: 71(A,) = r iff p(A,,r) holds in M = (M, ...).

Note that axiom 3d ensures 7t to map {A,, | ¢ is finite} into the reals. Axiom
6 allows us to apply Karatheodory’s Theorem to the measure ({A,, | ¢ is finite}, f7).
Thus 7r can be extended to a o-additive measure v on the o-ring which extends
{A, |  is finite}. Let v be the o-additive extension of . It is straightforward to
check that (9B, v) is a probability structure which satisfies the same finite (L, p3) 4P
sentences as (U, u1) does. That finishes a proof of the theorem.

REFERENCES

[K] H. J. Keisler, Probability quantifiers, Chapter 14 in Model Theoretic Languages (J. Barwise
and S. Feferman, Editors), Springer-Verlag, Berlin, 1985.
[H1] D. Hoover, Probability logic, Ann. Math. Logic 14 (1978), 287-313.
[H2] D. Hoover, A normal form theorem for L., ., with applications, J. Symbolic Logic 47
(1982), 605-624.

[R] M. D. Ragkovi¢, Completeness theorem for biprobability models, J. Symbolic Logic 51
(1986), 586—590.

Prirodno matematicki fakultet (Received 11 01 1989)
34000 Kragujevac, p.p. 60
Yugoslavia

Matematicki institut
Kneza Mihaila 35

11001 Beograd, p.p. 367
Yugoslavia



