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ASYMPTOTIC PROPERTIES
OF CONVOLUTION PRODUCTS OF FUNCTIONS

E. Omey

Abstract. The asymptotic behaviour of convolution products of the form [ f(z—y)g(y)dy
is studied. From our results we obtain asymptotic expansions of the form

R@) = [ @ = natidy - (@) [ sty - a(o) [ sy = Om(a).
Under rather mild conditions on f,g and m the O-term can be calculated more explicitely as
R(@) - (f( = 1) = f(@)) /0 ” ya(w)dy + (9(z — 1) — g(a)) /0 ~ yf )y + o(m(x).

An application in probability theory is included.

1. Introduction. In a recent series of papers, several authors have studied
the asymptotic bahaviour of the convolution product

f*g(w):z/oxf(w—y)g(y)dy (z > 0)

for functions f and ¢ in a suitable class of functions. In [6] Luxemburg introduced
the following class A of ”admissible” functions:

A function L belongs to the class A if it is continuous and if

(1) L(z + h) ~ L(x) (x = 00), forall h e R

(i7) 21;1[)) xrsr%gmL(t)/L(Qa:) < 0.

(1.1)

Using this class of functions Luxemburg estimates f * g(x) as follows.
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LeMMA 1.1. [6, Theorem 2.2] If f,g € L[0,00) and if L € A such that as
x =00 f(x) ~F-L(z) and g(x) ~ G - L(z)(F,G € R), then as x — oo

£ g(a) ~ (F / " )y + G / N f(y)dy> Liz)m

In [5] Geluk shows that the difference betwen f % g(z) and a suitable linear combi-
nation of f(z) and g(z) is small compared to f * g(x), f(z) and g(z).

LEMMA 1.2. [5, Theorem 2] If f,g € L'[0,00) belong to the class Ao defined
below and if for some ¢ >0, L(z) : = f(x—1)— f(z) ~ c(g(z—1) —g(x)) (x — 0),
then as © — oo,

(1ot [ sttt [~ san) ~ ([ 0 +a@pte) o m
o 0 0
The class Ag used in Lemma 1.2 is defined as follows: a positive function g belongs
to the class Ay if g € L[0,0) and if
(1) L(z) : = g(x — 1) — g(x) is positive for all z sufficiently large;
(i7) lim (g(x +a) — g(x))/L(z) = —a,Va € R
T—r00
(i41) limsup g(2z)/g(z) < 1
T—>00

g(t) — 9(2x)

(iv) limsup sup 2z —L21)

r—o0 x<t<2z

‘<oo

As an exemple of Ay we mention the function g(z) = z=%(Inz)” for 2 > 1 and
g(z) =0 for x <1, where a > 2 and 3 € R. Note that condition (iv) implies that
g'(x) exists and that

(1.2) ligsotip | ¢'(z) | /L(z) < oco.

Also note that (ii) implies L(z +a) ~ L(z)(x — oo) for a € R, i. e. L satisfies (1.1).

In this paper we plan to extend the results of Lemmas 1.1 and 1.2 and to this
end we will consider the class of functions A(m) defined by

A(m) ={g:R" > R" | sup | ¢'(z) | /m(x) < oo}

where the auxiliary function m belongs to some suitable class of functions. We
also give an application of our results in probability theory. This application is
an improvement of an estimate for the tail of the distribution function of the n—
fold convolution of a random variable, see Feller [4, VIII] and Geluk [5, p. 88].
Before stating our main results it should be remarked that the results below are
comparable to the results obtained in [7] where the convolution product of sequences
is considered.

2. Main results. In order to estimate the asymptotic behaviour of the
convolution product f x g we first recall some classes of functions which will be
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frequently used in the following. The class £ is the class of measurable functionc
f: R4 = R, such that

(2.1) lim f(z +1)/f(@) =1, VyeR.

If f € L, then the convergence in (2.1) is uniform in y-compact subsets of R, see [1,
I]. The following class SD has been introduced by Chover et. al [2]. A continuous
function m : R4 — R is in the class SD if m € £ N L]0, c0) and if

(2.2) lim m xm(z)/m(z) =c
Tr—r00
It is known that for m € SD the constant ¢ in (2.2) equals ¢ = 2 [~ m(y)dy.

This result is by no means trivial and its proof heavily depends on Banach algebra
techniques, see [2].

We first prove the following best possible extension of Lemma, 1.1.

THEOREM 2.1. Suppose | f |,| g |€ L[0,00) and m € SD are such that
f(x) ~ Fm(x) and g(x) ~ Gm(z) (F,G € R), then

fxg(x) ~ (F/Ooo g(y)dy+G/Ooo f(y)dy>m(w)- O

Remark. Here and in the following we will use the notation f(z) ~ ag(z) to
abbreviate lim f(x)/g(z) =

Proof. Under the conditions of the theorem there exist constants M and
o > 0 such that for © > xg.

(2.3) |[f(2)] < Mm(z) and |g(z)] < Mm(z)

For > 2z, we now have

gz { / / / } ) g(y)dy =: T+II+IIL.

Since m € SD implies that m(z —y) ~ m(z) (x — o0) uniformly for y € [0, zo] we
have

. oy [ Sy m—y)
(2.4) @) ek )y m@—y) m@)

o(y)dy = F /0 " o)y

and similary we have

(2.5) lim IIT/m(x G/ fly

T—r00

Finally, using (2.3) we have

r—To
<2 [ i ym)dy.
zo
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Using m € SD and hence m € £ we have

. 1 gm0 . mx*m(x) . o m(r —y)
Ilgrolom(m) /z m(z —y)m(y)dy = IhjgoW =2 lim ; Wm(y)dy
=2 / m(y)dy

zg
and it follows that
o0
(2.6) lim sup | IT | /m(z) < M22/ m(y)dy
r—>00 Zo

Now combine (2.4)—(2.6) and let xg — oo to obtain the proof of the theorem. W

Remark 2.2. The following O-analogue of Theorem 2.1. is clear: if f(z) =
O(m(x)), g(xz) = O(m(x))and mxm(z) = O(m(z)), then also fxg(z) = O(m(z)).
]

Since verifying m € SD may be difficult we now introduce the classes D
and R(a). A measurable function f : Ry — Ry is in the class D of function of
dominated variation if

(2.7) limsupf(zy)/f(x) < 0o, Yy > 0.

T—r00

The function f is regulary varying with index a(=: f € R(«a)) if
(2.8) lim f(zy)/f(z) =y", Vy>0.
T—r00

Whenever f € D or f € R(a) the convergence in (2.7) or (2.8) is uniform in y-
compact subsets of Ry, see [1, I]. It is well known that R(«a) C D N £ and that
DN LNL[0,00) C SD, see e. g. [1, 3]. From this it is clear that the class A of
admissible L]0, co)-functions is a subclass of SD so that Lemma 1.1 is implied by
Theorem 2.1. Another consequence of Theorem 2.1. is the following

COROLLARY 2.3. If f € SD, then f** € SD and f*(z) ~ nf(z)
(o™ fly)dy)" " m.

To obtain the rate of convergence in Corollary 2.3, Theorem 2.1 may be
used again. Suppose f € L[0,00) with fooo fly)dy = 1 and for n > 2 define
ra(z) = [ (2) — nf(z).

LEmMA 2.4. If m € SD and if ro(z) ~ Am(z) and r3(x) ~ Bm(zx) where
A, B € R, then for all n > 2

mlgrolorn(m)/m(m) = Bn(n—1)(n —2)/6 — An(n — 1)(n — 3)/2.

Proof. For n > 2 we have

Trna2(x) =1y xr2() + 2111 (x) + nrs(z) — 2nra ().
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Using [,° rn(y)dy = 1 — n it follows from Theorem 2.1 and by induction that for
alln > 2

lim rpq0(z)/m(z) = : cpyo
T —r 00
exists and that
Cnt2 = 2Cp+1 — Cn + n(es — 3¢2) + co.

Solving this difference equation and using co = A, ez = B we obtain the expression
fore, 0O

Remark 2.5. The following O-analogue of Lemma 2.4 is obvious: if ro(z) =
O(m(x)), rs(z) = O(m(x)) and m *m(z) = O(m(z)), then for all n > 2, r,(z) =
O(m(x)). A

The difficulty in Lemma 2.4 of course lays in checking the condition on 72

and r3. In the next result we shall restrict ourselves to the class A(m) of functions
defined as (¢f. (1.2)):

Afm)={g:Ry = R4 |K(g): = sup | g'(z) | /m(z) < oo}

Here m belongs to some class of functions to be specified later. If m € L]0, 00) we
define M(z) : = fooo m(s)ds and w.l.o.g we assume that M(oco) = 1. Also define
My (z) as My(z): =1— M(z).

For functions g € A(m) with m € L[0, 0o) the following inequalites are often
useful: for x >y >0

(2.9) o) =g |< [ 196 | ds < Klg)(M(a) - M(y)
(2.10) rery| T () | ds < K(9)M(a).

We first prove that under some mild condition on m(x), A(m) is closed under .
LEMMA 2.6. If m € L[0,00) and if as & — o0,

(2.11) M (z) = O(m(z))

(2.12) 1— M s*m(z) — 2M;(z) = O(m(x))
then A(m) is closed under x. B

Proof. Assume f,g € A(m) and consider (f * g)'(x). We have
Feo/@ = [ £@=0)6) - @)y + 9@ (@).
Using (2.9) and (2.10) for f or g we obtain

| (F*9) (@) |< K(F)K(g) ( / "l — ) (M(2) — M(y)dy + M%@s)).
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Since
/x m(z—y)(M(z)—M(y))dy = M?*(z)—m*M (z) = 1—mxM (x)—2M (z)+ M2 (z)

we obtain that | (f * ¢)'(z) |= O(m(z)).A

In our next result we estimate the difference
R(a): =fx9@) = 1(@) [ gy~ (@) [ )y
0 0

under various conditions on m, f and g. We start with an O-type of result.

THEOREM 2.7. Assume m € L'[0,00) and g € A(m).
(1) If f(z) = O(m(x)) and if (2.11) and (2.12) hold, then R(x) = O(m(z)).
(i7) If f € A(m) and if as x — oo

(2.13) My = My (z) — 2Mi () /0 My (y)dy = O(m(z))

(2.14) PMH@)+ M) [ " Mi(y)dy = O(m(z))

then R(z) = O(m(x)). O

Proof. (i) Let M : =sup | f(z) | /m(z) and write R(z) as

/f (2))dy — g(z / f(y)dy — f()/:og(y)dy-

It follows from (2.9) and (2.10) that

| R(z) |< MK (g) ( / ") (M(@) — M(z — y))dy + M2(2) + m(z) / h M1<y>dy).

The result now follows as in the proof of Lemma 2.6.

(ii) Now we use the decomposition
Rw) = [ (7o =) = F@)o0) ~ gte)dy

(@ [ oy + o) [ sy + s @)
=: [-II

Using (2.10) we have

(2.15) 1T |< K(f)K(g) (2M1<w> [+ wa<m>)



Asymptotic properties of convolution products of functions 47

which by assumption is O(m(z)) as  — co. As to I, using (2.9) we have
1< K(kG) [ "M () - M(z - ) (M(x) ~ M(y))dy
so that
11 KK @M @) ~2000) | M)+ 2002 (0) [ )iy +273)

Using (2.13) and (2.14) we also obtain that | I |= O(m(z)) and the proof of the
Theorem.H

COROLLARY 2.8. If f € A(m) with fooo fy)dy = 1 and if m satisfies the
hypothesis of Theorem 2.7. (i) and (ii), then for all n > 2,r,(x) = O(m(x)).

Proof . Tt follows from Lemma 2.6 that f*® € A(m) for all n > 2. Also, from
the definition of r,, it follows that for all n > 2

(2.16) o1 (2) = 1o x f(2) = (1 =n) f(2) + 1z ().

Now Theorem 2.7 (ii) gives r2(z) = O(m(z)); by induction it follows from Theorem
2.7 (ii) and (2.16) that for all n > 2, also rp41(z) = O(m(z)).A

If more is assumed about m od M; we prove that R(z) asymptotically equals
a constant times m(z). For further use we define

AS(m): = {€ A| lim (g(s — y) — g(w))/m(e) = Gy, Vy € R}
Note that if m € £ and g € A%(m), then lim (g(x —y) — g(x))/m(z) = Gy holds
uniformly in y-compact of R.

THEOREM 2.9. Let m € LN LY[0,00) and g € A% (m).
(i) If f(z) ~ Fm(z) (z — oo,F € R) and if

(2.17) IILH;O(I — M xm(x) — 2My(z))/m(z) = ¢
and
(2.18) M (z) = o(m(z)) (z — 00)

then ¢ =2 [~ ym(y)dy and

(2.19) lim R(z)/m = G/OOO yf(y)dy.

T—r00

(ii) If f € AF(m), if m € LN L?[0,0) and if

(2.20) lim

z—o0 m(x)

My + My (z) — 2Mi () /0 ” Ml(y)dy] —¢
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and
(2.21) mM%(m) + M (x) /000 M (y)dy = o(m(z)) (z — o)

then ¢ =2 [;° yMi(y)dy and

(2.22) lim R(z)/m(x) = F/Ooo yg(y)dy + G/Ooo yfly)dy. O

r—>00

Proof. (i) We first prove that ¢ = 2foo° ym(y)dy. To this end note that
(My %« My)' (z) = —(L —m* M(z) — 2M, (z)). It follows from (2.17) and I’'Hopital’s
rule that M; = M;i(x) ~ c¢My(z). Since m € L we also have M; € L, whence
My € SD and ¢ =2 [;° My (y)dy = 2 [,° ym(y)dy.

To prove (2.19), for o > 0 and = > 2z we write R(z) as

= </0I0 + /x:zo + /ﬂ;) f)(g(z —y) — g(x))dy

~g0) | " fw)dy - f(@) / " gy
= I+II4+III-IV-V

R(x

~

First consider IV; using (2.10) and (2.18) we have
(2.23) IV = o(m(z)) (z — 0).

By assumption we also have
o0
(2.24) V ~ F/ g(y)dy m(z).
0

Next consider I; since g € A“(m) implies that g(z —y) — g(x) ~ Gym(z) uniformly
for y € [0, 2] we have

(2.25) I~ G/:0 yf(y)dym(z).

As to II, as in the proof of Theorem 2.7 (i) we have

11 MEG) [ ) (@) - M — )y,
Now

/ ) (M (@) — Mz — y))dy = (1 — M« m(z) — 203 (x) — M?(x))

0

- [ 0r@) - dre =iy~ [ w01 - b~ )y
==A-B-C
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Using (2.17), (2.18) and the value of ¢ we have

T—r00

lim A/m(x) = 2/000 ym(y)dy

As to B, since m € £ we have M € A'(m) whence

r—>00

lim B/m(z) = /0°° ym(y)dy

and using m € £ once more we have

lim C/m(z) = /Ozo(l — M(y))dy.

Tr—r00

Combining these estimates we obtain

(2.26)
li II MK dy— dy— —M(y))dy ).
msup | 10| /() < MK () (2 [ vmnay= [ ymay— [~ a2
Finally consider III; using m € £ we have

R 1 0 fl—y) mz—y) Y
(2.27) xlgx;om(x) = lim_ . m@—y) m@) (9(y) — g())dy = F/O 9(y)dy

An interchange of limit and integral is indeed possible, since m € £ and

2) sup | flz—9)(gy) — g@) 1< M sup "D peiy1 - wgy))
m(z) o<y<w 0<y<z, M(7)

T

and since [, (1 — M(y))dy < oo. Now combine the estimates (2.23) — (2.27) and
let g — oo to obtain (2.19).

(ii) We first prove that ¢ = 2f000 yM, (y)dy; to this end consider Ms(z) : =
Jo Mi(y)dy and M3(z) = Ms(c0) — Ma(z). We have
(M3 % M3)"(z) = My * My(z) — 2M1(z) M5 (00).

Using (2.20) and de I'Hopital’s rule we obtain that Mz x Ms(z) ~ cMs(z).
Since m € L implies that M3 € L we obtain that M3 € SD and hence that
¢ =2 Ms(y)dy = 2 [;° yMi(y)dy. To prove the Theorem we use the decom-
position of R(z) as in the proof of Theorem 2.7 (ii). From (2.15) and (2.21) we
obtain

(2.28) II =o(m(x)) (z— ).

Next we consider I and for z > 2, 2o > 0 we write

; :( / Ry )(f(:v )~ @) o) — 9(e))dy
_avpro T
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As to I, we have f € Af(m) and le g(y) — g(z) = g(y) uniformly for y € [0, zo],
hence 2o
lim A/m(z) = F/ yg(y)dy.

0

T—r00

In a similar way we obtain that

iy C/m() =G [ty

Next for B we have
|BISK(K() [ T (@) — M@ — ) (M () — M(y))dy.

Using (2.20), (2.21) and similar arguments as before we obtain

oo

lim supB/m(x) < K (f)K(g) {2 |ty -2

Tr—r00

y M (y)dy] :

Now combine the estimates for A, B and C and let g — oo to obtain

lim I/m(z) = F /Ooo yg(y)dy + G /Ooo yf(y)dy

T—r00

and hence the proof of (2.22).1H

Remark 2.10. 1) Under the conditions on m of Theorem 2.9 we also have
f*g € A"(m). In the case of Theorem 2.9 (i) we have L = Gfooo f(2)dz and in
the other case we have

L= G/ f(z)dz + F/ g(z)dz.
0 0
2) It follows from (2.19) or (2.22) that R(z) can be expanded as follows:

R) = (fe=1) - 1) | " yely)dy + (gla — 1) — g(x)) / I )y + o(m(x))m

0

COROLLARY 2.11. If f € AF(m) with fooo fy)dy = 1 and if m satisfies the
hypothesis of Theorem 2.9 (i) and (ii), then for all n > 2,

lim r,(z/m(z) = n(n — l)F/OOo yf(y)dy.

T—00

Proof . If f € AF(m) it follows from Theorem 2.9 (i) that

o0
i ra(o)/m(a) =2F [ yf(u)dy.
Tr—>00 0
Now assume that for some n we have

(2.29) lim r,(z)/m(z) = ¢,

T—r00
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it then follows from Theorem 2.9 (i) (with g = f and f =r,) that

ok () — () — W(y)dy| = F o (y)dy.
ot £0) = 1a(0) = 1) [ ralids]| = [ umaiy
Using (2.29), ;" rn(y)dy =1 —n and [;° yr,(y)dy = 0 we obtain that

lim [+ f(2) = (1= n)f(@)] /m(x) =

r—>00

Using (2.16) and (2.29) we obtain that (2.29) holds with n replaced by n+1 and that
Cnt1 = Cn + ncz. Solving this difference equation and using ¢y = 2F fooo yf(y)dy
we obtain the desired result. W

In our next result we show that the conditions of the previous results hold for

many functions in the classes D or R(«a). If m € D, the upper Matuszewska index
a(m) of m is defined as [1]

1 m(zy) |
a(m) : IILH;O@ logzlgnoosup m(@)

If m € R(a) it is clear that a(m) = «; if m € D then a(m) always exists (possibly
a(m) = o0) and if a(m) < co then [1] for every a > a(m) there exist constants C
and z, such that

We now prove

PropPOSITION 2.12. (i) If m € D N L'[0,00) with a(m) < —2, then the
conditions of Lemma 2.6 hold. Furthermore, if also m € L, then the conditions of
Theorem 2.9 (i) hold.

(ii) If m € R(a) N LY[0,00) with a < —2, then the conditions of Theorem 2.9
(i) hold.

Proof. (i) Choose « such that a(m) < a < —1; integrating (2.30) w. r. to y
we obtain

(2.31) Mi(z)/zm(z) < C/(-1—a) =:D, Yz >z

Hence
M (z)
m(x)
so that (2.11) and (2.18) hold. Next consider (2.12); we have

<DsMy@) <D [ ymly)dy

1= M+ m(z) — 2M () = /Ooo m(y)M(z) — (M(z — y))dy — M2(z) = : LIT

We already proved that II= o(m(z))(x — 00) and as to I we write

- " / = my)dy + | " (e = (M (@) ~ M)y
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Since m € D we have

(2.32) sup sup m(z)/m <M
z>wy z/2<z<z

for some constants x; and M. Hence for x > x

I/m() < M( / " )y + / " () - M(y))dy) <o [ o)y

and (2.12) follows. On the other hand, if also m € L it follows from Lebesgue’e
theorem and (2.32) that

lim I/m(z) = 2 /Ooo ym(y)dy

T—00

so that in this case (2.17) holds.
(ii) If m € R(a)(a < —2) it follow from Karamata’s theorem that (2.31) can

be replaced by Mi(z) ~ xm(z)/(—1 — «). Now the remainder of the proof of the
result is the same as in (i) since R(a) C DN L.A

PropOSITION 2.13. (i) If m € D N L?[0,00) with a(m) < —3, then the
conditions of Theorem 2.7 (ii) hold. Furthermore if m € L then the conditions of
Theorem 2.9 (ii) hold.

(ii) If m € R(a) N L2[0,00) with a < —3, then the conditions of Theorem 2.9
(ii) hold. O

Proof . Choose a such that a(m) < a < —2; integrating (2.30) w. r. to y we
obtain (2.31) and integrating once again we obtain for some constant E that

(2.33) / M, (y)dy < Ex*m(x).
From (2.31) it follows that M (z)/m(z) < Da*Mi(z) < D [.° y*m(y)dz and

from (2.33) that

mzm) {Ml(w) /:O M1(y)dy} < E/:O y>m(y)dy.

Hence (2.21) and (2.14) follow at once. Next we consider M; x Ma(x) — 2M, (z)

Js° My (y)dy which can be written as

o0

z/2
2(/ (Mi (& — ) — Ma (&) My (y)dy — M (2) M1<y)dy) 21 - 17)
0

z/2
We already proved that II = o(m(x))(x — c0) so that only I has to be considered.
Using (2.32) we have

T
(2.34) Mi(x —y) — My (z) = / m(s)ds < Mm(z)y

=Y
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whence I/m(z) < M [;° yMi(y)dy < oo and (2.13) holds. If it is also knowm that
m € L we consider I; since m € £ we have
Mi(z —y) — M, (z) _ /”” m(s)ds
m(z) vy m(T)

= (z—> o)
-y
and using (2.34) and Lebesgue’s theorem on dominated convergence it follows that

lim I/m(x) = /000 y M (y)dy

T—r00

and hence (2.20) holds.
(ii) Ifm e R(a), a < -3, it follows from Karamata’s theorem that

M (z) ~zm(z)/(—1 — a) and /00 M (y)dy ~ zMy(x)/(-2 — a).

Hence also here (2.21) holds. The remainder of the proof can now be copied from
that of (i) since R(a) CDNL. B

Combining Corollary 2.11 and Propositions 2.12 and 2.13 we have

COROLLARY 2.14. Suppose m € DN L C L?[0,00) with a(m) < =3 or
m € R(a) N L*[0,00) with o < =3. If f € A¥(m) with [} f(y)dy = 1, then for
each n > 2, f* € A"F(m) and
lim (£ (z) = nf @) fm(a) =n(n = DF [ yf()dym

T—00 0

Corollary 2.14 can be interpreted in probability theory as follows. Let
X, X,Xs,...,X, be iid. positive random variables with distribution function
(d.f.) G, with density f and finite mean p. Then X; + ...+ X, has d.f. G*"(x),
the n-fold convolution of G, and has density f*". If f and m satisfy the hypothesis
of Corollary 2.14 we have

) — nf(z) ~2 (’;) uFim(z)
and hence
(2.35) 1-G*(z) —n(l — G(z)) ~ 2 (’;) uF M ().

The result extends a result of Feller’s book [4, VIII] which states that
1-G*"(x) ~n(l — G(z))
and (2.35) aslo extends Theorem 4 of Geluk [5].

A further extension of (2.35) can be obtained as follows. If n = 2 in (2.35) we
obtain 1 —G*?(x) —2(1—G(x)) ~ 2uF M, (z); hence to obtain a second-order result
in (2.35) it will be convenient to define for n > 3 the functions S, (z) as follows:

)(1 67 (@) - 2(1 - G(a).

n

5,(0)i= 1= G*(0) = (1 - 6() -
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Also define g, () as

We now prove

LEMMA 2.15. For n > 4 we have

n—1

(2.36) Sp(z) = < ) )53(93) + Sy % gn ().

Proof . Since G*(x) = Ox g*!(s)ds we have
Sz f*i(z) = G™(z) — 3G (z) + 3G""2(2) — G""3 ().

Some straightforward calculations then give

S * gn(z) = —G™"(z) + <" ) 2) G(z) — (n —3)(n — 1)G"2(z) + <" N 1) G ()

and the Lemma follows.H
It is not hard to show that

(2.37) (Ax&@Myzémy&@Myzo

and that for n > 4

(2.38) Am%@@z@gﬁ.

We now prove

COROLLARY 2.15. If f € A (m) with fooo fl)dy = 1 and if m satisfies the
hypothesis of Theorem 2.9 (i) and (ii), then for alln >3, as x — o0

1
m(x)

1—G™"(2) —n(1 — G(x)) + (Z) (1 —2G(z) + G“(w))} - 3“2F<Z>

Proof . Tt follows from Corollary 2.11 and Lemma 2.6 that f*! € A*¥". Hence
gn € A%(m) for some constant G. We have to prove that

. 9,2 n
(2.39) wlgr;osn(m)/m(m) =—-3u F<3>.
Now we first prove that
(2.40) 1i_>m Sz(z)/m(z) = —3u*F.

Define Ry(z) : = 1 — 2G(x) + G*(x) and observe that
Ry(z) = r2(z), S3(z) = Ra(z) — Re * f(2)
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In Corollary 2.11 we proved that ro(z) ~ 2uFm(z)(x — oo) and hence we have
Ra(z) € A**¥'(m). From Theorem 2.9 (ii) it follows that as z — oo,

ﬁ [RQ % f(z) — Ra(2) /000 f(x)dz — f(z) /Ooo RQ(y)dy]

—>2MF/0 yf(y)dy+F/0 yRa(y)dy.

Using [~ f(y)dy =1, [;° Ra(y)dy =0 and [} yRs(y)dy = p? we obtain (2.40).
To prove (2.39) use g € A%(m), (2.40) and Theorem 2.9 (i) see that

Jlin S = 520) [ iy —o0) [ ssas] =6 [T usatran
Using (2.36)—(2.38) and (2.40) we obtain (2.39).H
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