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ASYMPTOTIC PROPERTIES

OF CONVOLUTION PRODUCTS OF FUNCTIONS

E. Omey

Abstract. The asymptotic behaviour of convolution products of the form
R
x

0
f(x�y)g(y)dy

is studied. From our results we obtain asymptotic expansions of the form

R(x) :=

Z
x

o

f(x� y)g(y)dy � f(x)

Z
1

g(y)dy � g(x)

Z
1

0

f(y)dy = O(m(x)):

Under rather mild conditions on f; g and m the O-term can be calculated more explicitely as

R(x) � (f(x� 1)� f(x))

Z
1

0

yg(y)dy + (g(x � 1) � g(x))

Z
1

0

yf(y)dy + o(m(x)):

An application in probability theory is included.

.

1. Introduction. In a recent series of papers, several authors have studied
the asymptotic bahaviour of the convolution product

f � g(x) : =

Z x

0

f(x� y) g (y)dy (x � 0)

for functions f and g in a suitable class of functions. In [6] Luxemburg introduced
the following class � of "admissible" functions:

A function L belongs to the class � if it is continuous and if

(1.1)
(i) L(x+ h) � L(x) (x!1); for all h 2 R

(ii) sup
x>0

max
x�t�2x

L(t)=L(2x) <1:

Using this class of functions Luxemburg estimates f � g(x) as follows.
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Lemma 1.1. [6, Theorem 2.2] If f; g 2 L[0;1) and if L 2 � such that as

x!1 f(x) � F � L(x) and g(x) � G � L(x)(F;G 2 R), then as x!1

f � g(x) �

�
F

Z 1

0

g(y)dy +G

Z 1

0

f(y)dy

�
L(x):�

In [5] Geluk shows that the di�erence betwen f � g(x) and a suitable linear combi-
nation of f(x) and g(x) is small compared to f � g(x); f(x) and g(x).

Lemma 1.2. [5, Theorem 2] If f; g 2 L1[0;1) belong to the class �0 de�ned

below and if for some c > 0; L(x) : = f(x�1)�f(x) � c(g(x�1)�g(x)) (x!1),
then as x!1,�
f �g(x)�f(x)

Z 1

o

g(y)dy�g(x)

Z 1

0

f(y)dy

�
�

�Z 1

0

t(c�1f(t)+g(t))dt

�
L(x):�

The class �0 used in Lemma 1.2 is de�ned as follows: a positive function g belongs
to the class �0 if g 2 L1[0;1) and if

(i) L(x) : = g(x� 1)� g(x) is positive for all x suÆciently large;

(ii) lim
x!1

(g(x+ a)� g(x))=L(x) = �a; 8a 2 R

(iii) lim sup
x!1

g(2x)=g(x) < 1

(iv) lim sup
x!1

sup
x�t�2x

???? g(t)� g(2x)

(2x� t)L(2x)

???? <1:

As an exemple of �0 we mention the function g(x) = x��(lnx)� for x > 1 and
g(x) = 0 for x � 1, where � > 2 and � 2 R. Note that condition (iv) implies that
g0(x) exists and that

(1.2) lim sup
x!1

j g0(x) j =L(x) <1:

Also note that (ii) implies L(x+a) � L(x)(x !1) for a 2 R, i. e. L satis�es (1.1).

In this paper we plan to extend the results of Lemmas 1.1 and 1.2 and to this
end we will consider the class of functions �(m) de�ned by

�(m) = fg : R+ ! R+ j sup
x�0

j g0(x) j =m(x) <1g

where the auxiliary function m belongs to some suitable class of functions. We
also give an application of our results in probability theory. This application is
an improvement of an estimate for the tail of the distribution function of the n�
fold convolution of a random variable, see Feller [4, VIII] and Geluk [5, p. 88].
Before stating our main results it should be remarked that the results below are
comparable to the results obtained in [7] where the convolution product of sequences
is considered.

2. Main results. In order to estimate the asymptotic behaviour of the
convolution product f � g we �rst recall some classes of functions which will be
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frequently used in the following. The class L is the class of measurable functionc
f : R+ ! R+ such that

(2.1) lim
x!1

f(x+ y)=f(x) = 1; 8y 2 R:

If f 2 L, then the convergence in (2.1) is uniform in y-compact subsets of R, see [1,
I]. The following class SD has been introduced by Chover et. al [2]. A continuous
function m : R+ ! R+ is in the class SD if m 2 L \ L[0;1) and if

(2.2) lim
x!1

m �m(x)=m(x) = c

It is known that for m 2 SD the constant c in (2.2) equals c = 2
R1
0

m(y)dy.
This result is by no means trivial and its proof heavily depends on Banach algebra
techniques, see [2].

We �rst prove the following best possible extension of Lemma 1.1.

Theorem 2.1. Suppose j f j; j g j2 L[0;1) and m 2 SD are such that

f(x) � Fm(x) and g(x) � Gm(x) (F;G 2 R), then

f � g(x) �

�
F

Z 1

0

g(y)dy +G

Z 1

0

f(y)dy

�
m(x): �

Remark . Here and in the following we will use the notation f(x) � ag(x) to
abbreviate lim

x!1
f(x)=g(x) = a.

Proof . Under the conditions of the theorem there exist constants M and
x0 > 0 such that for x � x0.

(2.3) jf(x)j �Mm(x) and jg(x)j �Mm(x)

For x � 2xo we now have

f � g(x) =

�Z x0

0

+

Z x�x0

x0

+

Z x

x�x0

�
f(x� y) g(y)dy =: I+II+III:

Since m 2 SD implies that m(x � y) � m(x) (x !1) uniformly for y 2 [0; x0] we
have

(2.4) lim
x!1

I

m(x)
= lim

x!1

Z x0

0

f(x� y)

m(x� y)

m(x� y)

m(x)
g(y)dy = F

Z x0

0

g(y)dy

and similary we have

(2.5) lim
x!1

III=m(x) = G

Z x0

0

f(y)dy:

Finally, using (2.3) we have

j II j�M2

Z x�x0

x0

m(x � y)m(y)dy:
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Using m 2 SD and hence m 2 L we have

lim
x!1

1

m(x)

Z x�x0

xo

m(x� y)m(y)dy = lim
x!1

m �m(x)

m(x)
� 2 lim

x!1

Z x0

0

m(x� y)

m(x)
m(y)dy

= 2

Z 1

x0

m(y)dy

and it follows that

(2.6) lim
x!1

sup j II j =m(x) �M22

Z 1

x0

m(y)dy

Now combine (2.4)|(2.6) and let x0 !1 to obtain the proof of the theorem. �

Remark 2.2. The following O-analogue of Theorem 2.1. is clear: if f(x) =
O(m(x)); g(x) = O(m(x)) and m�m(x) = O(m(x)), then also f �g(x) = O(m(x)).
�

Since verifying m 2 SD may be diÆcult we now introduce the classes D
and R(�). A measurable function f : R+ ! R+ is in the class D of function of
dominated variation if

(2.7) lim sup
x!1

f(xy)=f(x) <1; 8y > 0:

The function f is regulary varying with index �(=: f 2 R(�)) if

(2.8) lim
x!1

f(xy)=f(x) = y�; 8y > 0:

Whenever f 2 D or f 2 R(�) the convergence in (2.7) or (2.8) is uniform in y-
compact subsets of R+, see [1, I]. It is well known that R(�) � D \ L and that
D \ L \ L[0;1) � SD, see e. g. [1, 3]. From this it is clear that the class � of
admissible L[0;1)-functions is a subclass of SD so that Lemma 1.1 is implied by
Theorem 2.1. Another consequence of Theorem 2.1. is the following

Corollary 2.3. If f 2 SD, then f�n 2 SD and f�n(x) � nf(x)�R1
0

f(y)dy
�n�1

: �.

To obtain the rate of convergence in Corollary 2.3, Theorem 2.1 may be
used again. Suppose f 2 L[0;1) with

R1
0

f(y)dy = 1 and for n � 2 de�ne
rn(x) : = f�n(x)� nf(x).

Lemma 2.4. If m 2 SD and if r2(x) � Am(x) and r3(x) � Bm(x) where

A;B 2 R, then for all n � 2

lim
x!1

rn(x)=m(x) = Bn(n� 1)(n� 2)=6�An(n� 1)(n� 3)=2:

Proof . For n � 2 we have

rn+2(x) = rn � r2(x) + 2rn+1(x) + nr3(x) � 2nr2(x):
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Using
R1
0 rn(y)dy = 1 � n it follows from Theorem 2.1 and by induction that for

all n � 2
lim
x!1

rn+2(x)=m(x) = : cn+2

exists and that
cn+2 = 2cn+1 � cn + n(c3 � 3c2) + c2:

Solving this di�erence equation and using c2 = A; e3 = B we obtain the expression
for cn. �

Remark 2.5. The following O-analogue of Lemma 2.4 is obvious: if r2(x) =
O(m(x)); r3(x) = O(m(x)) and m �m(x) = O(m(x)), then for all n � 2; rn(x) =
O(m(x)). �

The diÆculty in Lemma 2.4 of course lays in checking the condition on r2
and r3. In the next result we shall restrict ourselves to the class �(m) of functions
de�ned as (cf. (1.2)):

�(m) = fg : R+ ! R+ j K(g) : = sup
x�0

j g0(x) j =m(x) <1g

Here m belongs to some class of functions to be speci�ed later. If m 2 L[0;1) we
de�ne M(x) : =

R1
o

m(s)ds and w.l.o.g we assume that M(1) = 1. Also de�ne
M1(x) as M1(x) : = 1�M(x).

For functions g 2 �(m) with m 2 L[0;1) the following inequalites are often
useful: for x � y � 0

(2.9) j g(x)� g(y) j�

Z x

y

j g0(s) j ds � K(g)(M(x)�M(y))

(2.10) j g(x) j�

Z 1

x

j g0(s) j ds � K(g)M1(x):

We �rst prove that under some mild condition on m(x); �(m) is closed under �.

Lemma 2.6. If m 2 L[0;1) and if as x!1,

(2.11) M2
1 (x) = O(m(x))

(2.12) 1�M �m(x)� 2M1(x) = O(m(x))

then �(m) is closed under �. �

Proof . Assume f; g 2 �(m) and consider (f � g)0(x). We have

(f � x)0(x) =

Z x

0

f 0(x� y)(g(y)� g(x))dy + g(x)f(x):

Using (2.9) and (2.10) for f or g we obtain

j (f � g)0(x) j� K(f)K(g)

�Z x

0

m(x� y)(M(x)�M(y))dy +M2
1 (x)

�
:
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SinceZ x

o

m(x�y)(M(x)�M(y))dy =M2(x)�m�M(x) = 1�m�M(x)�2M1(x)+M
2
1 (x)

we obtain that j (f � g)0(x) j= O(m(x)):�

In our next result we estimate the di�erence

R(x) : = f � g(x)� f(x)

Z 1

0

g(y)dy � g(x)

Z 1

0

f(y)dy

under various conditions on m; f and g. We start with an O-type of result.

Theorem 2.7. Assume m 2 L1[0;1) and g 2 �(m).

(i) If f(x) = O(m(x)) and if (2:11) and (2:12) hold, then R(x) = O(m(x)).

(ii) If f 2 �(m) and if as x!1

(2.13) M1 �M1(x)� 2M1(x)

Z 1

0

M1(y)dy = O(m(x))

(2.14) xM2
1 (x) +M1(x)

Z 1

x

M1(y)dy = O(m(x))

then R(x) = O(m(x)). �

Proof . (i) Let M : = sup j f(x) j =m(x) and write R(x) as

R(x) =

Z x

0

f(y)(g(x� y)� g(x))dy � g(x)

Z 1

x

f(y)dy � f(x)

Z 1

o

g(y)dy:

It follows from (2.9) and (2.10) that

j R(x) j�MK(g)

�Z x

0

m(y)(M(x)�M(x� y))dy+M2
1 (x) +m(x)

Z 1

x

M1(y)dy

�
:

The result now follows as in the proof of Lemma 2.6.

(ii) Now we use the decomposition

R(x) =

Z 1

0

(f(x� y)� f(x))(g(y)� g(x)dy

�

�
f(x)

Z 1

x

g(y)dy + g(x)

Z 1

x

f(y)dy + xf(x)g(x)

�

= : I-II

Using (2.10) we have

(2.15) j II j� K(f)K(g)

�
2M1(x)

Z 1

x

M1(y)dy + xM2
1 (x)

�
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which by assumption is O(m(x)) as x!1. As to I, using (2.9) we have

j I j� K(f)k(g)

Z x

0

(M(x)�M(x� y))(M(x) �M(y))dy

so that

j I j� K(f)K(g)

�
M1�M1(x)�2M1(x)

Z 1

0

M1(y)dy+2M1(x)

Z 1

x

M1(y)dy+xM
2
1 (x)

�
:

Using (2.13) and (2.14) we also obtain that j I j= O(m(x)) and the proof of the
Theorem.�

Corollary 2.8. If f 2 �(m) with
R1
0 f(y)dy = 1 and if m satis�es the

hypothesis of Theorem 2:7. (i) and (ii), then for all n � 2; rn(x) = O(m(x)).

Proof . It follows from Lemma 2.6 that f�n 2 �(m) for all n � 2. Also, from
the de�nition of rn it follows that for all n � 2

(2.16) rn+1(x) = rn � f(x)� (1� n)f(x) + nr2(x):

Now Theorem 2.7 (ii) gives r2(x) = O(m(x)); by induction it follows from Theorem
2.7 (ii) and (2.16) that for all n � 2, also rn+1(x) = O(m(x)):�

If more is assumed about m od M1 we prove that R(x) asymptotically equals
a constant times m(x). For further use we de�ne

�G(m) : = f2 � j lim
x!1

(g(x� y)� g(x))=m(x) = Gy; 8y 2 Rg

Note that if m 2 L and g 2 �G(m), then lim
x!1

(g(x� y)� g(x))=m(x) = Gy holds

uniformly in y-compact of R.

Theorem 2.9. Let m 2 L \ L1[0;1) and g 2 �G(m).

(i) If f(x) � Fm(x) (x!1; F 2 R) and if

(2.17) lim
x!1

(1�M �m(x) � 2M1(x))=m(x) = c

and

(2.18) M2
1 (x) = o(m(x)) (x!1)

then c = 2
R1
0

ym(y)dy and

(2.19) lim
x!1

R(x)=m = G

Z 1

0

yf(y)dy:

(ii) If f 2 �F (m), if m 2 L \ L2[0;1) and if

(2.20) lim
x!1

1

m(x)

�
M1 �M1(x)� 2M1(x)

Z 1

0

M1(y)dy

�
= c
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and

(2.21) xM2
1 (x) +M1(x)

Z 1

0

M1(y)dy = o(m(x)) (x!1)

then c = 2
R1
0

yM1(y)dy and

(2.22) lim
x!1

R(x)=m(x) = F

Z 1

0

yg(y)dy +G

Z 1

0

yf(y)dy: �

Proof . (i) We �rst prove that c = 2
R1
0 ym(y)dy. To this end note that

(M1 �M1)
0(x) = �(1�m �M(x)� 2M1(x)). It follows from (2.17) and l'Hopital's

rule that M1 � M1(x) � cM1(x). Since m 2 L we also have M1 2 L, whence
M1 2 SD and c = 2

R1
0

M1(y)dy = 2
R1
0

ym(y)dy.

To prove (2.19), for x0 > 0 and x � 2x0 we write R(x) as

R(x) =

�Z x0

0

+

Z x�x0

x0

+

Z x

x�xo

�
f(y)(g(x� y)� g(x))dy

� g(x)

Z 1

x

f(y)dy � f(x)

Z 1

0

g(y)dy

= : I+II+III-IV-V

First consider IV; using (2.10) and (2.18) we have

(2.23) IV = o(m(x)) (x!1):

By assumption we also have

(2.24) V � F

Z 1

0

g(y)dym(x):

Next consider I ; since g 2 �G(m) implies that g(x�y)�g(x) � Gym(x) uniformly
for y 2 [0; x0] we have

(2.25) I � G

Z x0

0

yf(y)dym(x):

As to II, as in the proof of Theorem 2.7 (i) we have

j II j�MK(g)

Z x�x0

x0

m(y)(M(x) �M(x� y))dy:

NowZ x�x0

x0

m(y)(M(x)) �M(x� y))dy = (1�M �m(x)� 2M1(x)�M2
1 (x))

�

Z x0

0

m(y)(M(x)�M(x� y))dy �

Z x

x�x0

m(y)(M(x) �M(x� y))dy

=: A�B � C
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Using (2.17), (2.18) and the value of c we have

lim
x!1

A=m(x) = 2

Z 1

0

ym(y)dy

As to B, since m 2 L we have M 2 �1(m) whence

lim
x!1

B=m(x) =

Z 1

0

ym(y)dy

and using m 2 L once more we have

lim
x!1

C=m(x) =

Z x0

0

(1�M(y))dy:

Combining these estimates we obtain
(2.26)

lim sup
x!1

j II j =m(x) �MK(g)

�
2

Z 1

0

ym(y)dy�

Z x0

0

ym(y)dy�

Z x0

0

(1�M(y))dy

�
:

Finally consider III; using m 2 L we have

(2.27) lim
x!1

III

m(x)
= lim

x!1

Z x0

0

f(x� y)

m(x� y)

m(x� y)

m(x)
(g(y)� g(x))dy = F

Z x0

0

g(y)dy

An interchange of limit and integral is indeed possible, since m 2 L and

1

m(x)
sup

0�y�x0

j f(x� y)(g(y)� g(x)) j�M sup
0�y�x0

m(x� y)

m(x)
�K(g)(1�M(y))

and since
R x0
0 (1�M(y))dy <1. Now combine the estimates (2.23) | (2.27) and

let x0 !1 to obtain (2.19).

(ii) We �rst prove that c = 2
R1
0 yM1(y)dy; to this end consider M2(x) : =R x

0 M1(y)dy and M3(x) =M2(1)�M2(x). We have

(M3 �M3)
00(x) =M1 �M1(x)� 2M1(x)M2(1):

Using (2.20) and de l'Hopital's rule we obtain that M3 � M3(x) � cM3(x).
Since m 2 L implies that M3 2 L we obtain that M3 2 SD and hence that
c = 2

R1
0

M3(y)dy = 2
R1
0

yM1(y)dy. To prove the Theorem we use the decom-
position of R(x) as in the proof of Theorem 2.7 (ii). From (2.15) and (2.21) we
obtain

(2.28) II = o(m(x)) (x!1):

Next we consider I and for x � 2; x0 > 0 we write

I =

�Z x0

0

+

Z x�x0

x0

+

Z x

x�xo

�
(f(x� y)� f(x))(g(y) � g(x))dy

= : A+B + C
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As to I, we have f 2 �F (m) and lim
x!1

g(y)� g(x) = g(y) uniformly for y 2 [0; x0],

hence

lim
x!1

A=m(x) = F

Z x0

0

yg(y)dy:

In a similar way we obtain that

lim
x!1

C=m(x) = G

Z x0

0

yf(y)dy:

Next for B we have

j B j� K(f)K(g)

Z x�x0

x0

(M(x) �M(x� y))(M(x) �M(y))dy:

Using (2.20), (2.21) and similar arguments as before we obtain

lim sup
x!1

B=m(x) � K(f)K(g)

�
2

Z 1

0

yM1(y)dy � 2

Z 1

0

yM1(y)dy

�
:

Now combine the estimates for A, B and C and let x0 !1 to obtain

lim
x!1

I=m(x) = F

Z 1

0

yg(y)dy +G

Z 1

0

yf(y)dy

and hence the proof of (2.22).�

Remark 2.10. 1) Under the conditions on m of Theorem 2.9 we also have
f � g 2 �L(m). In the case of Theorem 2.9 (i) we have L = G

R1
0

f(z)dz and in
the other case we have

L = G

Z 1

0

f(z)dz + F

Z 1

0

g(z)dz:

2) It follows from (2.19) or (2.22) that R(x) can be expanded as follows:

R(x) = (f(x� 1)� f(x))

Z 1

0

yg(y)dy+ (g(x� 1)� g(x))

Z 1

0

yf(y)dy+ o(m(x))�

Corollary 2.11. If f 2 �F (m) with
R1
0 f(y)dy = 1 and if m satis�es the

hypothesis of Theorem 2:9 (i) and (ii), then for all n � 2,

lim
x!1

rn(x=m(x) = n(n� 1)F

Z 1

0

yf(y)dy:

Proof . If f 2 �F (m) it follows from Theorem 2.9 (ii) that

lim
x!1

r2(x)=m(x) = 2F

Z 1

0

yf(y)dy:

Now assume that for some n we have

(2.29) lim
x!1

rn(x)=m(x) = cn
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it then follows from Theorem 2.9 (i) (with g � f and f � rn) that

lim
x!1

1

m(x)

�
rn � f(x)� rn(x) � f(x)

Z 1

0

rn(y)dy

�
= F

Z 1

0

yrn(y)dy:

Using (2.29),
R1
0 rn(y)dy = 1� n and

R1
0 yrn(y)dy = 0 we obtain that

lim
x!1

h
rn � f(x)� (1� n)f(x)

i
=m(x) = cn:

Using (2.16) and (2.29) we obtain that (2.29) holds with n replaced by n+1 and that
cn+1 = cn + nc2. Solving this di�erence equation and using c2 = 2F

R1
0 yf(y)dy

we obtain the desired result. �

In our next result we show that the conditions of the previous results hold for
many functions in the classes D or R(�). If m 2 D, the upper Matuszewska index
�(m) of m is de�ned as [1]

�(m) : = lim
x!1

1

log y

�
log lim sup

x!1

m(xy)

m(x)

�
:

If m 2 R(�) it is clear that �(m) = �; if m 2 D then �(m) always exists (possibly
�(m) =1) and if �(m) <1 then [1] for every � > �(m) there exist constants C
and xo such that

(2.30) m(xy)=m(x) � Cy�; 8y � 1; 8x � x0:

We now prove

Proposition 2.12. (i) If m 2 D \ L1[0;1) with �(m) � �2, then the

conditions of Lemma 2:6 hold. Furthermore, if also m 2 L, then the conditions of

Theorem 2:9 (i) hold.

(ii) If m 2 R(�) \L1[0;1) with � � �2, then the conditions of Theorem 2:9
(i) hold.

Proof . (i) Choose � such that �(m) < � < �1; integrating (2.30) w. r. to y
we obtain

(2.31) M1(x)=xm(x) � C=(�1� �) = : D; 8x � x0

Hence
M2

1 (x)

m(x)
� DxM1(x) � D

Z 1

x

ym(y)dy

so that (2.11) and (2.18) hold. Next consider (2.12); we have

1�M �m(x)� 2M1(x) =

Z 1

0

m(y)M(x)� (M(x� y))dy �M2
1 (x) = : I-II

We already proved that II= o(m(x))(x !1) and as to I we write

I =

Z x=2

0

Z x=2

x�y

m(z)dz m(y)dy +

Z x=2

0

m(x� y)(M(x) �M(y))dy:
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Since m 2 D we have

(2.32) sup
x�x1

sup
x=2�z�x

m(z)=m �M

for some constants x1 and M . Hence for x � x1

I=m(x) �M

�Z x=2

0

ym(y)dy +

Z x=2

0

(M(x) �M(y))dy

�
� 2M

Z 1

0

ym(x)dy

and (2.12) follows. On the other hand, if also m 2 L it follows from Lebesgue'e
theorem and (2.32) that

lim
x!1

I=m(x) = 2

Z 1

0

ym(y)dy

so that in this case (2.17) holds.

(ii) If m 2 R(�)(� � �2) it follow from Karamata's theorem that (2.31) can
be replaced by M1(x) � xm(x)=(�1 � �). Now the remainder of the proof of the
result is the same as in (i) since R(�) � D \ L:�

Proposition 2.13. (i) If m 2 D \ L2[0;1) with �(m) � �3, then the

conditions of Theorem 2:7 (ii) hold. Furthermore if m 2 L then the conditions of

Theorem 2:9 (ii) hold.

(ii) If m 2 R(�) \L2[0;1) with � � �3, then the conditions of Theorem 2:9
(ii) hold. �

Proof . Choose � such that �(m) < � < �2; integrating (2.30) w. r. to y we
obtain (2.31) and integrating once again we obtain for some constant E that

(2.33)

Z 1

x

M1(y)dy � Ex2m(x):

From (2.31) it follows that xM2
1 (x)=m(x) � Dx2M1(x) � D

R1
x y2m(y)dx and

from (2.33) that

1

m(x)

�
M1(x)

Z 1

x

M1(y)dy

�
� E

Z 1

x

y2m(y)dy:

Hence (2.21) and (2.14) follow at once. Next we consider M1 �M2(x) � 2M1(x)R1
0 M1(y)dy which can be written as

2

�Z x=2

0

(M1(x� y)�M1(x))M1(y)dy �M1(x)

Z 1

x=2

M1(y)dy

�
=: 2(I � II)

We already proved that II = o(m(x))(x !1) so that only I has to be considered.
Using (2.32) we have

(2.34) M1(x� y)�M1(x) =

Z x

x�y

m(s)ds �Mm(x)y



Asymptotic properties of convolution products of functions 53

whence I=m(x) �M
R1
0 yM1(y)dy <1 and (2.13) holds. If it is also knowm that

m 2 L we consider I; since m 2 L we have

M1(x� y)�M1(x)

m(x)
=

Z x

x�y

m(s)ds

m(x)
! (x!1)

and using (2.34) and Lebesgue's theorem on dominated convergence it follows that

lim
x!1

I=m(x) =

Z 1

0

yM1(y)dy

and hence (2.20) holds.

(ii) If m 2 R(�); � � �3, it follows from Karamata's theorem that

M1(x) � xm(x)=(�1� �) and

Z 1

x

M1(y)dy � xM1(x)=(�2� �):

Hence also here (2.21) holds. The remainder of the proof can now be copied from
that of (i) since R(�) � D \ L. �

Combining Corollary 2.11 and Propositions 2.12 and 2.13 we have

Corollary 2.14. Suppose m 2 D \ L � L2[0;1) with �(m) � �3 or

m 2 R(�) \ L2[0;1) with � � �3. If f 2 �F (m) with
R1
0 f(y)dy = 1, then for

each n � 2, f�n 2 �nF (m) and

lim
x!1

(f�n(x) � nf(x))=m(x) = n(n� 1)F

Z 1

0

yf(y)dy:�

Corollary 2.14 can be interpreted in probability theory as follows. Let
X;X1; X2; . . . ; Xn be i.i.d. positive random variables with distribution function
(d.f.) G, with density f and �nite mean �. Then X1 + . . . +Xn has d.f. Gxn(x),
the n-fold convolution of G, and has density f�n. If f and m satisfy the hypothesis
of Corollary 2.14 we have

f�n(n)� nf(x) � 2

�
n

2

�
�Fm(x)

and hence

(2.35) 1�Gxn(x)� n(1�G(x)) � 2

�
n

2

�
�FM1(x):

The result extends a result of Feller's book [4, VIII] which states that

1�Gxn(x) � n(1�G(x))

and (2.35) aslo extends Theorem 4 of Geluk [5].

A further extension of (2.35) can be obtained as follows. If n = 2 in (2.35) we
obtain 1�Gx2(x)�2(1�G(x)) � 2�FM1(x); hence to obtain a second-order result
in (2.35) it will be convenient to de�ne for n � 3 the functions Sn(x) as follows:

Sn(x) := 1�Gxn(x)� n(1�G(x)) �

�
n

2

�
(1�Gx2(x)) � 2(1�G(x)):
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Also de�ne gn(x) as

gn(x) : =

n�3X
i=1

�
n� i� 2

2

�
f�i(x):

We now prove

Lemma 2.15. For n � 4 we have

(2.36) Sn(x) =

�
n� 1

2

�
S3(x) + S3 � gn(x):

Proof . Since Gxi(x) =
R x
0 g�i(s)ds we have

S3 � f
�i(x) = Gxi(x)� 3Gxi+1(x) + 3Gxi+2(x)�Gxi+3(x):

Some straightforward calculations then give

S3 � gn(x) = �Gxn(x) +

�
n� 2

2

�
G(x)� (n� 3)(n� 1)Gx2(x) +

�
n� 1

2

�
Gx3(x)

and the Lemma follows.�

It is not hard to show that

(2.37)

Z 1

0

S3(y)dy =

Z 1

0

yS3(y)dy = 0

and that for n � 4

(2.38)

Z 1

0

gn(y)dy =

�
n� 1

3

�
:

We now prove

Corollary 2.15. If f 2 �F (m) with
R1
0

f(y)dy = 1 and if m satis�es the

hypothesis of Theorem 2:9 (i) and (ii), then for all n � 3, as x!1

1

m(x)

�
1�Gxn(x)� n(1�G(x)) +

�
n

2

�
(1� 2G(x) +Gx2(x))

�
� 3�2F

�
n

2

�

Proof . It follows from Corollary 2.11 and Lemma 2.6 that f�i 2 �iF . Hence
gn 2 �G(m) for some constant G. We have to prove that

(2.39) lim
x!1

Sn(x)=m(x) = �3�2F

�
n

3

�
:

Now we �rst prove that

(2.40) lim
x!1

S3(x)=m(x) = �3�3F:

De�ne R2(x) : = 1� 2G(x) +Gx2(x) and observe that

R02(x) = r2(x); S3(x) = R2(x)�R2 � f(x)
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In Corollary 2.11 we proved that r2(x) � 2�Fm(x)(x ! 1) and hence we have
R2(x) 2 �2�F (m). From Theorem 2.9 (ii) it follows that as x!1,

1

m(x)

�
R2 � f(x)�R2(x)

Z 1

0

f(x)dx � f(x)

Z 1

0

R2(y)dy

�

! 2�F

Z 1

0

yf(y)dy + F

Z 1

0

yR2(y)dy:

Using
R1
0 f(y)dy = 1;

R1
0 R2(y)dy = 0 and

R1
0 yR2(y)dy = �2 we obtain (2.40).

To prove (2.39) use g 2 �G(m), (2.40) and Theorem 2.9 (i) see that

lim
x!1

1

m(x)

�
S3 � gn(x)�S3(x)

Z 1

0

gn(y)dy� g(x)

Z 1

0

S3(y)dy

�
= G

Z 1

0

yS3(y)dy:

Using (2.36){(2.38) and (2.40) we obtain (2.39).�
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