PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 42 (56), 1987, pp. 131-141

SOME SPECIAL CASES OF PARALLEL DISPLACEMENTS
IN RECURRENT FINSLER SPACES

Irena Comié

Abstract. Some special cycles of line elements in the recurrent Finsler space F), are con-
sidered. If the vector is parallely transported along one of the cycles of lineelements the difference
between the original vector and the one obtained after parallel transportation is expressed by
some of the curvature tensor. The method used here is the generalisation of that, used by Varga
[1], for the non-recurrent Finsler space.

1. Introduction. Let us consider Finsler space Fj, in which the metric
function is F'(x,2) and the metric tensor is defined by

Gop(x, @) = 27 0,05 F*(x, ).

Definition 1.1. The Finsler space is called recurrent and is denoted by F,
when there exist vector fields A, (z, %) and u(z, &) homogeneous of degree zero in
% such that [2]

(1.1) 9aply = Oy gap — FOs gap I5 3 = I3, 958 — 15, 9as = Ay gas

(1.2) Gosly = FOs gap (65 — A")) — A% gas — Ay’ 958 = Iy 9o
(1.3) Dgaﬁ = gaﬁ|’vdm’y + gaﬁ|’YDl’y
(1.4) DI =dl” +I)";dz" + A, ; DI°,

where D denotes the absolute differential which corresponds to the change of the
lineelement from (z, %) to (x + dz, & 4+ di) and ”o” means the contracton by I. The
connection coefficients I'™ and A are determined under conditions

(1.5) asy = Liga
(1.6) Aoy = Aypa-
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From (1.1) and (1.5) I;;, may be determined in the unique way and similarly
(1.2) and (1.6) determine A,3,. The connection coefficients obtained in this way
are generalisations of the Cartan connections in the case of a non recurrent Finsler
space (when A, =0 and p, = 0).

Using the notation {Tyag} + {v8} = Tyap + Tagy — T3ya we have [3]

(1.7) 2F;Bv = {a’YgaB _Féégaﬁ F:dfy _Awgaﬁ}"{_{’yaﬂ}
(1.8) 2075, = 2Yapy 1% — FO5 g3, 13% — (A1 + Xogsy — Asly)
(1.9) 2175 50 = 2% go — (2ol — Ag),

where 7,3+ is the Christoffel symbol. Further we obtain

(1.10) 2Aapy = {Féa 98y — Fo; 98~ Aoda — Ba 9y} +{aBv}
(1.11) 2 Aogy = —F05 gy Ao — (opy + 1l — psly)
(1.12) 2 Ao go = — (210l — 11p)

We shall suppose that in F}, all vector and tensor fields are homogeneous of
degree zero in %.

LEMMA 1.1. If in anam and £%|3 are defined by

(1.13) €5 = 05E™ — FO5 €% I + I;%€°
(1.14) €5 = FOs €7 (85 — A ) + A58,
then

(115) &Ym = aﬁfa _Féa foz F:(Sﬁ _F;J[igé
(116) £a|ﬁ = F66 fa(ég - Aodﬁ) - Aa6B€5

Proof. From a5 = (9as€°) |3 = 9ass€ + gast])s by using (1.13) (1,1) and
9a605E° = 0pla — £°05959as
(1.17) gadéxfd = 8}(60( - gdéxgaé
we obtain (1.15). From

€als = (9a6€)|s = 9aslsE’ + 9as€’| 5
by using (1.16) (1.2) and (1.17) we have (1.16).
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Using the notations of (1.13)—(1.16) we have

DE* = €% 5da” +€%|gDI7, Do = €415 da” + EqipDIP.

LEMMA 1.2. In F vector dz is normal to A iff 1+ 2l is normal to DI i.e.

Ay dz” =0& (puy +21,)DI" = 0.

Proof. From g,5l%1° = 1 we get Dgnsl®l® + gosl®DIP = 0.
Using (1.3), (1.1) and (1.2) we have

(1.18) Ay dz” =0& (puy +21,)DI" = 0.
from which the statement follows.
An obvious consequence of (1.18) is:

LEMMA 1.3. If the vector 1 is parallely transported from (x, %) to (x +dzx, & +
dit) i.e. DIY =0 then A\, dz” = 0, which means that dx is normal to \.

For any vector field £%(z, %) we have

(1.19) D ¢* = d¢* + w§(d)¢”
where
(1.20) wg(d) = I3 dz" + Ay° DI”

From (1.4) we obtain
) *

(1.21) DI =dI" + I}),da”,
where I] =67 — A7s.

Let us suppose that [I]] is a regular matrix whose inverse is [.J/]
(1.22) R =

From (1.21) it follows DI? = (dIX + I3, dx”)J?.

Further from (X = F~13X and
(1.23) diX = (0,F tdz" — F %, di")zX + F~tiX
we have

DI’ = JO[(I}X, — F 1}, F)da™ + (6% — 1,1X)di"].

2. Connection coefficients I" and C. wj(d) appearing in (1.19) and (1.20)
may be written in the form

(2.1) w§(d) = I, de” + C,° di.
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The connection coefficients I™* and A from (1.20) are uniquelly determined
under conditions (1.1), (1.2), (1.5) and (1.6). They are given by (1.7)—(1.12). We
are going to obtain relations between I', C' and '™ and A. For that reason we shall
equate the right hand side of (1.20) and (2.1) and use the relations (1.18), (1.23)
and obtain

Ip® daY + Cf di" = I35da” + Ag®™ DIY + 03[\ dx” + (uy +207) DI
or
22) Iy da” + C§,di" = (15X + 035 ),)dz”
[A% + 05 (o + 219)|JE[(I2X, — FHX0, F)da” + F~' (6 — 1,1%)di"],

where 6§ = 05 (z, %) is any tensor homogeneous of degree zero in . By equating
the coefficients becide dz” and d&” we obtain

(2.3) I5, = V5% + 05 Ay + [ASy + 05 (no + 21)|JL (I3, — F X0, F),

(2.4) Cy®, = [Ag% + 05 (1o + 21p)|JLF 1 (6X — 1,1X)

LEMMA 2.1. The relation
(2.5) C5,3" =FC3, =0
is valid for any 03.
The proof is obvious from (2.4).
For 03 =0, (2.3) and (2.4) become [4]
(2.6) Iy =I5 + AZg JU(IX, — FTUX0,F)
(2.7) Cg, = AgngF_l(&f —1,0%)

Formulae (2.6) and (2.7) are not practical for calculation because they contain
the term Ji, for which all we know is the relation (1.22).

From (1.21) we obtain

(2.8) di" = F(6) — A, ,)DI’ — FI" da® — 3" FdF
Substituting (2.8) into (2.2) we have

(2.9) Iy, — FCI,°, = I3, + 05X,

(2.10) FC§5(05 — A ) =AY + 65 (uy +21,)

In the case of non recurrent Finsler space where A, =0, u, = 0, A067 =0
the equations (2.9) and (2.10) have the from

o o *0 *Qr
(2.11) T, — FO3TS, = I3e,
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(2.12) FC'g,Y = A%,Y + 20;%

For 05 = 0 (2.12) takes the well known form FCg, = A% . In the further
calculation we shall use the formulae [4]

F., =0,F - FO;FI;’, =27'F)\,.
3. Parallel displacenxent of vector along the cycle of lineelements.

Let us consider the cycle of lineelements as they are presented on the picture

Py (x4ox, x4 6%)
Py =Py dPy=(x4+dx+dx+ddx, x+6i+di+dox)

P=P +oP =(x+dx+0x18dx, itdiidi+6d%)

P, (x+dx, &+ d%)

P(x, %)

Let us fix the point P with the local coordinates z® in F,. By T, (P) we
shall denote the set of all & in P which form a tangent space. In T, (P) we can
construct a basis which containes the tangent vectors r, (o = 1,2,...,n) on the
coordinate curves z° = C%, 3 =1,2,...,a — 1l,a+ 1,...,n. Let us consider two
infinitesimal vectors PP; and PP, which respectivly have the form PP, = dz%r,,
PPy = 0x%r,. If the vector PP, is parallely transported along PP, we get the point
P5 and if PP, is parallely moved along PP, we get P;. In this case the lineelement
are not parallel, only the basic vectors are. The coordinates of the point P; are
% +dx® + 62 + ddz”, where ddz" = —w§ (8)dz® and the coordinates of the point
Pj are z® + dz* + dz® + dox®™ where diz® = —wg(d)&rﬁ. In the general case Ps
and P} are not the same points and the vector P3Py is the torsion vector in F',,. It
has the coordinates

Q% = déz® — 6da” = w§(8)da’ — wf(d)sx”
In F, with the connection coefficients I'* and A we obtain
O~ = Aj (da’ Al" — 52° DI7).

If DI = 0 and Al” = 0, then 2% = 0 and the points P; and Pj have the
same coordinates. In that case we have an infinitesimal parallelogram PP, P, Ps.

Let us consider how the basic vectors change if they are parallely transported
along PP1P3 and PPQP?:P3

By the parallel transportation of r, from P(z,%) to P (z + dz,z + di) we
obtain in Piry + dr,, where Dr, = dro, — wo” (d)rg = 0.
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By the parallel transportation of r, from P(z,%) to Py(z + 0z, % + §%) in P
we get 1o + 0rq, where Ar, = dr, — w,’(d)rg = 0.

If the vector r, + dr, at P; is parallely transported to Ps(z + dz + dz +
ddx, % + di + 0% + ddi) at P; we have the vector 7o + dry + d(ro + dry), where

Sdro = dwo” (d)rg + wa’ (d)ws” (8)rp.

If the vector ro + 0ry at Py is parallely transported to Pi(x + dr + dz +
dozx, & + 0% + di + diE) at Pj we get the vector ro + drq + d(ry + 074) where

ddry = dwy” (8)rs + we” (8)ws® (d)rp.

If the vector ro + 0rq + dro + dor, at Pj is parallely transported to P; we
obtain in P the vector rq + 1y +dry +ddr, + Vr, where Vr, describes the change
of r, along P{Ps; and has the form

Vra = I,% rg(dd — o)z + C,° rg(dd — do)i".

The difference between vectors which are obtained by parallel transportation
of ro along PP, PyP; and PP, Ps is denoted by Dr,. Then we have

(3.1) Dro = — (6d — dd)ra + Vre =
— (6d — dd)ro + I,° ra(dd — do)a” + C,.° rg(dd — do)i.
The vector Dr, can be expressed by the curvature tensors. We have Dr, =
dro —wy” (d)rg and
ADry =6 (Dry) —wa’ (6) Drs = §dro — Swa” (d)rs—
w,” (d) drg — wy° () [drs — ws® (d) ra.
From the above equation we get

(3.2) (AD — DA)ry = (0d — dd)ro — Qurs,

wy? = [wa‘sw(;ﬁ] — (waﬁ)'
[wa’ws"] = wa’ (d)ws” () — wa’ (6)ws” (d)
(waﬁ)' = dw,” (d) — dwaﬁ((S).
After some calculation we obtain
(3.3) 0.7 = A." + B,
where [5]

(34) A7 =27 K, P 5[daB027] + (PLP s — AP, 0sT5") 4+ 2718,7 5[ DIT Al°]
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(3.5) B,? = A,ﬂv(&D —dA) + I8 (6d — do)z”
-1 B8 _ *[3 xL 0
2 Ka 76 — 8 | ‘FY a F F] a[,yl—'lb‘d].
(3.6) PP s =FO,I37, (05 — Aos) — Al + AL#X0, Iy

271,75 =FO,AL 1, (85 — Alys) + Aa' 1410 s

On the other hand from (1.4) and (2.8) using the homogenity of I"J* = F I}
(first degree) and A (zero degree) we obtain

(3.7) (0% — A,X)(0D — dA)I® = BX + BY

where .
BX =F~N (01 = O,I7 X Iy da” 62° )+

DsIX — O, TN Ay's — Dy Ao"s + 0, Ao Xs I134) [da™ Al’]+
Fos A ) — 03X, Ay s) + [DU AL

(3.8) BX = F~(6d — d6)& + &X(6d — do)F~" + F~' X (6d — db)z”

It is known that #%|3, so from the above equation and (3.4) we obtain

(3.9) 27 KX s = F—l(awr;x d, Iy

Substituting (2.10) into (3.5) we get
(3.10) Bo” = Bo (1) + Ba"5)
where according to (3.7) we have

Bo 1y =I5 (6d — ds)z” + FC,P BX — 0,° (ud + 215)(6D — dA) 1°

(3.11) Bo" 2y = FC.”\ BX
From (1.18) we get
(3.12) Ay (6d — db) 27 + (py + 21,) (6D — dA) 17 + (6A dz” — d\, 627 )+
O(py +20y) D" —d (py + 21,) AI" =0
and using (3.18) and (2.5) we have
(3.13) Bo 1y =(I38 + CoP \ I3 + 667 \y) (6d — db) 7
Co” 7((Sd —db6) &7 + Bo" (1)

(3.14) Bo" 1y =0,° 5\, dz? — d\, 627
O(py +20y) DI — d (py + 21,) Al7].
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Substituting I,”., from (2.9) into (3.13) we have
By =T3P, (0d — do) z7 + Co”,(0d — d6) &7 + B, (1)
Using (3.9) and the relation

(3.15) OIX (85 — Ao's) — 0y AXs + AN =
PIXs = AT 4 T2+ 27 AEA,

the formula (3.11) has the form

(3.16) Bo" (2 =FC.2 {27 KX 5[da” Al°]+
(Py*as — AN 05 I3 + Iy + 27 AN sA ) [da? AL+
271 (0, A0 1, (05 — Ajo)57) (D™ A}

THEOREM 3.1. In the recurrent Finsler space F,Dr,, and the curvature ten-
sors are connected by:
(317)  (AD — DA)ro = —Dro — rs{27 ' [Ko" 5 + FC.® KX 5][da” 62°)+
[PLP16 — A® 05T + FCoP (P s — AN 05T + T;X + 27 A% My )[da” AL]+
27" [Sa5 + F20a’x 0,401, (85) — Ajo'sDI[Da” A] = r5Ba” 1y

Proof. Substituting (3.16), (3.13), (3.14) into (3.10), further (3.10) and (3.4)
into (3.3), (3.4) into (3.2) by using (3.1) we obtain (3.17).

In the non recurrent Finsler space (where A, = 0 and p, = 0 we have

B,y = 20," (61, DI — dI, Al").

If we have not only A, = 0, u, = 0 but the condition §,° = 0, then the
connection coefficients 4,7, and I';7., are the Cartans connection coefficients and
Ay, = FC,P,. In this case from (1.11), (1.12) it follows A,X, = 0 the left hand
side of (3.15) reduces to the (%F;X and (3.17) has the form

(AD — DA)ry =
—Dro — r5{27 R.P 5[dx702°] + PP s5[dx” Al°] + 2718, 2. s[DIYAL°]}.

[e%

(3.18)

When the vector r,, is parallely transported along PP, P; and PP, P} P; then
Dr, =0, Ar, =0 and in this case from (3.18) we have

~Dry = —13{2 'R,75[dx762°) + PP s[dx” Al°] + 2718, P, s[DITAI°]}.

In the case of a recurrent Finsler space F,, when Dr, = 0 and Ar, = 0 from
(3.17) Dr, has more complicated form.
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4. Special cases- Case 1. Let us consider the case when in F,, dz” = 0
and 0z” = 0 i. e. when the lineelements P, P, and P, have the common center zx.

Then we have
P(z,z), Pi(x, &+ dz), Pz, &+ 0i)
P3 :P1 +5P1 = ($,$+d$+6$+5d$),
P} =P, +dP, = (x4 + §i + di + dii).
In this case we have

Dro =droy — AP rgDlY,  Ary =614 — ALP rg Al

(A= DA)ro =(5d — dd)ro — 27" 13[FO,Aa" 1,85 — Ajol's))+

4.1
- AQL[JA\LIQW][DWA”;] - Aaﬁwg((sD —dA) .

Substituting A,”., from (2.10) and using (3.12) where (6d — d§) 27 = 0 we
have

—Aa 15 (6D — dA)IX == FCoP, rg (8% — Ao'y) (0D — dA) X

(4.2)
— 05 r5[0(py + 20,)DIY — d(py + 21,) AlY].

As in this case

(8L — A, )DIX =dlI', (8% — Ay ) AIX = 61
using the homogenity condition we obtain
(8% — A" ) (6D — dA)X =F~*(6d — db)i" + &' (6d — d6)F '+
43) FOy Aot (8 — AX) (DI AI° — Al AP).

Substituting (4.3) into (4.2) and then (4.2) into (4.1) we get
(AD = DA)ro = —=Dro —14[2 S0 5 + F?Ca’ 0, A, X[, (05 — Ajo)][DI” AI’]—
00" 15[6 (1 + 21,) DIY — d (py + 21,) Al]
where from (3.1) in this case Dr, has the form
Dro = —(0d — dd)re + CoPrs(6d — db)i”

In the non-recurrent Finsler space F),, where we take 6,° = 0, y =0 =
AP, =FC,", = A, =0 we have

(4.4) (AD — DA)ry = —Dry — 2 1r3Sa3,6[ DI Al°].
In the case when Dr, =0, Ar, =0 (4.4) gives
Dry = —271755,°.,5[DI" Al°]
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Case 2. Let us consider the lineelements
P(z,%)
P (x +dx, &+ 0x) with DI=0
Py(z,& + d&) with dx =0
Py =P + 6P, = (z+dx, & + di + 6z + ddi), (dz = 0),
Py =P, +dP, = (z + dz, & + 6% + di + ddz).
From DI° = 0 we have

(4.5) di® = —Fi’dF~' — '™ da" .

From 6z° = 0 we get
(4.6) (60 — A0 ) AlY = 61° = F163° + &% F ' =
0% = (67 — A,°,) Al' — Fi’sF .
In this case we have

(4.7) a) Dr, =dry, — Fgfméiﬂ b) Ary =07y — Aaﬁﬂ,rgAl”’

From 6z = 0 = déz = 0 and Dr,, has the form
(4.8) —Dro = —(0d — dd)ro + I[P 36z — CoPrs(6d — do)i”
From (4.7) we obtain
(AD = DA)ro =13 [FOT:, (05 — Ao's) — 0.Aa"s + 0, A" sT2!
(4.9) — A TP, 4+ APsTr da” AP+
(6d — dd)ro — T3P radda™ + AP rpdAlY.
From (2.10) using (4.6) and C,%3X = 0 we get
Ay g dAD = [FCoP rp (84 — Ag'y) — 0a” (py + 21,)]d AD.
From (3.12) in case 2 it follows
B = (py +20))d A" = A\, ddx” + Ay da” — d(p, + 21,) Al7.
From Lemma 1.3 it follows that in case
DI" =0= A\dz" =0= 0\ de” + X\, ddz” =0
and B reduces to the form B = —d(u, + 2l,) Al”. Then
AL dA = FCLP 15 (0, A% s — 0, AT ) da Al°—

4.10
(410 0.° 158 + FCoPsrs (dF 16i° + F1doi® 4+ di®6F ).
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We can add and substract 6di’, to the last term of (4.10), where from (4.5) we

have
8di® = —0Fi°dF~' — F§i0dF~" — Fi®sdF " —

I [F(D — Ap'y) Al — Fi'§F~'|daX — I 5dz™.

Using the homogenity condition of I';® in & (first degree) and the relation Co?5i? =
0 (4.10) has the form

AP rg dAIY = —FCoPy g [0iT2X (0 — Ao's)—
(4.11) By AoXs + 0, AXsT2 T da” AP — CoP s rg (6d — db) i —
CoPy s X ode” — 0.” r3 B.
Substituting (4.11) into (4.9) using (3.6), (3.15), (4.8) and (2.9) we obtain
(AD = DA)ro = —Dro — 1 [Py — Ad” 055 +
FCoP (P)X s — AX, 055 + T5X, + 27 A X5\, da” Al° — 6, r B.

[

(4.12)

In the non recurrent Finsler space Fj, when 6,° = 0 (4.12) reduces to the
form

(AD — DA)r, = —Dro — 5 PLP. §dz7 AI°.
When Dr, =0, Ar, =0 from (4.13) it is easy to see that

Dro = —r3 PLP. s dx” Al°.

Case 3. Let us consider the cycle of lintlements

P(z, ),
(4.14) Pi(x +dz, &+ di), DI =0=di® =3"F 'dF — I'"§dz”,
(4.15) Pa(x + 0z, & + 0%), Al* =0= §i* = ¢*F~'0F — 562",
P; =P, 4+ 6P, = (x + dz + 6z + ddz, & + dt + 0% + ddz),
Py = P, +dP> = (z + 0x + dzx + dox, & + 0% + di + di).

From Dr, = dr, — F;ngdaﬂ it follows

(4.16) (AD — DA)ry = (6d —dd)ro — %P 1 (6d — do)x” — 271K P 5[dx™ 62°).
From (4.14), (4.15) and C,%,37 = 0 it follows

(4.17)  Co”(6d — d)i" = CoPgI3%(6d — d)a’ — 27 ' FC.P 9 K, 5, [da” 527].
From (4.17) and (2.9) we obtain

TP (6d — dd)z? = (To° —05°\,) (6d — db) z7 +

4.18
(4.18) CP(6d — db) &7 + 2 L FCLP K, 5, [dz” 627).
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Substituting (4.18) into (4.16) and using (3.1) we get
(AD-DA)ry = —Dro—2 (Ko’ s+FC,  K°\5) [dz” §2°]40,° X, (3d—dd) =7

For the case of a non recurrent Finsler space (when A\, = 0, u, = 0) and
9,° =0 I,", and A,”, = FC,P., are the Cartans connection coefficients. In this
case for Dr, =0 and Ar, = 0 we obtain.

Dr, = —2_1Raﬁw5r5 [dz” 61‘6]
where Raﬁnﬂ; = Kaﬁnﬂs + AaﬁxKX"w;.
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