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EXISTENCE THEOREMS FOR Lp

{ SOLUTIONS OF INTEGRAL EQUATIONS IN BANACH SPACES

Stanislaw Szu
a

Abstract. We study the integral equation x = F (x) in a Banach space E, where F (x)(t) =R
D
f(t; s; x(s))ds and f satis�es usual conditions which guarantee that F continuously maps the

space LP (D;E) into itself. We show that if f satis�es a Kamke condition with respect to the
Kuratowski measure of noncompactness, then the above equation has a solution in LP (D;E).

1. Introduction. Let D = [0; d] be a compact interval in R and let E
be a real Banach space. Denote by Lp(D;E)(p > 1) the space of all strongly
measurable functions u : D ! E with

R
D
ku(t)kpdt < 1, provided with the norm

kupk = (
R
D ku(t)k

pdt)1=p.

In this paper we consider the Urysohn integral equation

(1) x(t) = g(t) + �

Z
D

f(t; s; x(s))ds

and the Volterra integral equation

(2) x(t) = g(t) +

Z t

0

f(t; s; x(s))ds:

Throughout this paper we shall assume that

1Æ g 2 Lp(D;E).

2Æ (t; s; x) ! f(t; s; x) is a function from D2 � E into E which is continuous in
x for a.e. t; s 2 D and strongly measurable in (t; s) for each x 2 E.

3Æ kf(t; s; x)k � K(t; s)(a(s) + bkxkp=q) for t; s 2 D and x 2 E where

(i) q > 1, b � 0, a 2 Lq(D;R) and a � 0; let r = q=(q � 1);

(ii) (t; s) ! K(t; s) is a function from D2 into R+ such that K(t; �) 2 Lr(D;R)
for a.e. t 2 D and the function t! k(t) = kK(t; �)kr, belongs to L

p(D;R).

AMS Subject Classi�cation (1980): Primary 45N05.



100 Szu
a

In contrast to the case E = Rn, the conditions 1Æ{3Æ are not suÆcient for the
existence of a solution x 2 Lp(D;E) of (1) or (2) when E is in�nite dimensional.
Therefore one has imposed additional conditions on f . In [5] it was proved that
the integral equation

(3) x(t) = g(t) +

Z t

0

Q(t; s)'(s; x(s))ds

has an Lp { solution whenever 'p satis�es a H�older condition expressed in terms of
Kuratowski's measure of noncompactness. Now we shall show that similar theorems
are valid also for the equations (1) and (2). Let us remark that the existence proofs
given below di�er totally from those in [5].

2. Measures of noncompactness. Let � and �p denote the Kuratowski
measures of noncompactness in E and Lp(D;E), respectively. For a given set V of
functions from D into E we de�ne a function � by �(t) = �(V (t)) for t 2 D (under
the convention that �(X) = 1 if X is unbounded), where V (t) = fx(t) : x 2 V g.
Recently Heinz [2] proved the following important

Theorem 1. Let V be a countable set of strongly measurable functions
D ! E such that there exists � 2 L1(D;R) such that kx(t)k � �(t) for all x 2 V
and t 2 D. Then the corresponding function � is integrable and

�

��Z
D

x(t)dt : x 2 V

��
� 2

Z
D

�(t)dt:

Now we shall prove a theorem clarifying the relation between � and �p.

Theorem 2. Let V be a countable set of strongly measurable functions
D ! E such that

(i) there exists � 2 Lp(D;R) such that kx(t)k � �(t) for all x 2 V and t 2 D;

(ii) limh!0 supx2V
R
D
kx(t+ h)� x(t)kpdt = 0. Then �p(V ) � 2

�R
D
�p(t)dt1=p

�
.

Proof. Without loss of generality we may assume that all functions from
Lp(D;E) are extended to R by putting x(t) = 0 outside D. For any positive
number h put Vh = fxh : x 2 V g, where

xh(t) =
1

2h

Z t+h

t�h

x(s)ds for t 2 D:

It is well known that under the assumptions (i) and (ii) the set Vh is equicontinuous
and uniformly bounded. Moreover,

lim
h!0

kx� xhkp = 0 uniformly in x 2 V:

This implies that

(4) �p(V ) = lim
h!0

�p(Vh)
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and, by Lemma 3 of [5],

�p(Vh) �

�Z
D

(�(Vh(t)))
pdt

�1=p

:

On the other hand, by Theorem 1, we have

�(Vh(t)) = �

 (
1

2h

Z t+h

t�h

x(s)ds : x 2 V

)!
�

1

h

Z t+h

t�h

�(V (s))ds;

i.e.

(6) �(Vh(t)) � 2�h(t) for t 2 D;

where �h(t) =
1
2h

R t+h
t�h �(s)ds. As limh!0 k���hkp = 0, from (4) { (6) we conclude

that �p(V ) � 2
�R

D �
p(t)dt

�1=p
.

3. Urysohn integral equations. Let F be the mapping de�ned by

F (x)(t) =

Z
D

f(t; s; x(s))ds (x 2 Lp(D;E); t 2 D):

It is known that under the assumptions 1Æ { 3Æ F continuously maps Lp(D;E) into
itself. Assume, in addition, that for any % > 0

4Æ limh!0 supkxkp��
R
D kF (x)(t+ h)� F (x)(t)kdt = 0.

Let (t; s) ! H(t; s) be a function from D2 into R+ such that H(t; �) 2
Lm(D;R)(m = p=(p � 1)) for a.e. t 2 D, and the function t ! kH(t; �)km be-
longs to Lp(D;R).

Theorem 3. If f and g satisfy 1Æ { 4Æ and

(7) �(f(t; s; Z)) � H(t; s)�(Z)

for t; s 2 D and for each bounded subset Z of E, then there exists a positive number
� such that for any � 2 R with j�j < � the equation (1) has a solution x 2 Lp(D;E).

Proof. Put

� = min

�
sup
r>0

r � kgkp
kkkp(kakq + brp=q)

;
1

2k kp

�
;

where  (t) = kH(t; �)km for t 2 D. Fix � 2 R with j�j < �. Then there exists
% > 0 such that

kgkp + j�jkkkp(kakq + b%p=q) � %:

Let B = fx 2 Lp(D;E) : kxkp � %g and G(x) = g+ �F (x) for x 2 B. Then G is a
continuous mapping B ! B and

(8) kG(x)(t)k � �(t) for x 2 B and t 2 D;
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where �(t) = kg(t)k+ j�jk(t)(kakq+ b%
p=q). Let V be a countable subset of B such

that

(9) V � conv(G(V ) [ f0g):

Then
V (t) � conv (G(V ))(t) [ f0g) for a.e. t 2 D;

so that

(10) �(V (t)) � �(G(V )(t)) for a.e. t 2 D:

Put �(t) = �(V (t)) for t 2 D. From 4Æ and (9) it is clear that

lim
h!0

sup
x2V

Z
D

kx(t+ h)� x(t)kdt = 0:

Since kx(t)k � �(t) for all x 2 V and a.e. t 2 D, and � 2 Lp(D;R), this implies

lim
h!0

sup
x2V

Z
D

kx(t+ h)� x(t)kpdt = 0:

Hence, by Theorem 2, � 2 Lp(D;R) and

(11) �p(V ) � 2k�kp:

Fix now t 2 D such that k(t) <1. From 3Æ and (8) it follows that

kf(t; s; x(s))k � �(s) for x 2 V and a.e. s 2 D;

where the function s! �(s) = K(t; s)(a(s)+ b�p=q(s)) belongs to L1(D;R). Thus,
by (7), (10) and Theorem 1, we get

�(V (t)) � j�j�

��Z
D

f(t; s; x(s))ds : x 2 V

��

� 2j�j

Z
D

�(ff(t; s; x(s)) : x 2 V g)ds � 2j�j

Z
D

H(t; s)�(V (s))ds;

i.e. �(t) � 2j�j
R
DH(t; s)�(s)ds. Consequently, by the H�older inequality, we have

�(t) � 2j�j (t)k�kp. As the above inequality holds for a.e. t 2 D, we obtain
k�kp � 2j�jk kpk�kp. Since 2j�jk kp < 1, from this we deduce that k�kp = 0.
Therefore, by (11), �p(V ) = 0, i.e. V is relatively compact in Lp(D;E). Applying
now M�onch's generalizaton of the Schauder �xed point theorem [4] we conclude
that there exists u 2 B such that u = G(u). It is clear that u is a solution of (1).

4. Volterra integral equations. Consider now the equation (2). Choose a
positive number a < min(d; !+), where [0; !+) is the maximal interval of existence
of the maximal absolutely continuous solution z of the initial value problem

z0 = (kg(t)k+ k(t)kakq + bk(t)z1=q)p; z(0) = 0:
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Let J = [0; a], % = maxt2J z(t) and B = fx 2 Lp(J;E) : kxkp � %g. Put

F (x)(t) =

Z t

0

f(t; s; x(s))ds (x 2 Lp(J;E); t 2 J):

Assume that (t; s; u) ! h(t; s; u) is a nonnegative function de�ned for 0 �
s � t � d, u � 0, satisfying the following conditions:

(i) for any nonnegative u 2 Lp(D;R) there exists the integralZ t

0

h(t; s; u(s))ds for a.e. t 2 D;

(ii) for any c, 0 < c � d, u = 0 a.e. is the only nonnegative function on [0; c]
which belongs to Lp([0; c]; R) and satis�es

u(t) � 2

Z t

0

h(t; s; u(s))ds almost everywhere on [0; c].

Theorem 4. If 1Æ { 4Æ hold and

(12) �(f(t; s; Z)) � h(t; s; �(Z))

for t; s 2 D and for each bounded subset Z of E, then the equation (2) has at least
one solution x 2 Lp(J;E).

Proof. Put G(x) = g + F (x) for x 2 B. Then G is a continuous mapping of
B into Lp(J;E). For any positive integer n we de�ne a function un by

un(t) =

(
g(t) if 0 � t � a=n

g(t) +
R t�a=n
0 f(t; s; un(s))ds if a=n � t � a:

By the H�older inequality from 3Æ it follows that

(13) kun(t)k � kg(t)k+ k(t)kakq + bk(t)

�Z t

0

kun(s)k
pds

�1=q

and

(14) kun(t)� g(t)�

Z t

0

f(t; s; un(s))dsk � kn(t)(kakq + b(

Z t

0

kun(s)k
pds)1=q)

for t 2 J , where

kn(t) =

�
k(t) if 0 � t � a=n

kK(t; �)�[t�a=n;t]kr if a=n � t � a:

Putting zn(t) =
R t
0
kun(s)k

pds, we see that zn(0) and

z0n(t) � (kg(t)k+ k(t)kakq + bk(t)z1=qn (t))p for a.e. t 2 J:
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Hence, applying the theorem on di�erential inequalities, we conclude that zn(t) �
z(t) � % for t 2 J . Consequently, un 2 B and, by (13),

kun(t)k � �(t) for t 2 J;

where �(t) = kg(t)k+ k(t)(kakq + b%p=q). On the other hand, as limn!1 kn(t) = 0
and kn(t) � k(t) for a.e. t 2 J , (14) implies that

lim
n!1

(un(t)�G(un)(t)) = 0 for a.e. t 2 J

and

(15) lim
n!1

kun �G(un)kp = 0:

Arguing similarly as in the proof of Theorem 3, we can show that the set fun : n =
1; 2; . . .g is relatively compact in Lp(J;E). Thus we can �nd a subsequence (unj)
of (un) which converges in Lp(J;E) to a limit u. In view of (15), this implies that
u = G(u), so that u is a solution of (2).

5. Volterra-Hammerstein integral equations. In this section we shall
apply the result from Section 4 to the equation (3). Assume that

5Æ (s; x) ! '(s; x) is a function from D � E into a Banach space M which is
strongly measurable in s and continuous in x, and

k'(s; x)k � a(s) + bkxkp=q for s 2 D and x 2 E;

6Æ Q is a strongly measurable function from D2 into the space of continuous
linear mappings M ! E such that kQ(t; s)k � K(t; s) for t; s 2 D. Further-
more, we assume that

7Æ p � g and 1 � l � p=q; let i be such that 1=r+1=i+ l=p = 1 and 1 < i � 1;
or

7Æ0 p � 2, 1 � l � p� 1 and K 2 Lp(D2; R); let i be such that 1 < i � 1 and
1=p+ 1=i+ l=p = 1.

Theorem 5. If g, ' and Q satisfy 1Æ, 5Æ, 6Æ, and 7Æ or 7Æ0, and there exists
a function c 2 Li(D;R) such that �('(t; Z)) � c(t)�l(Z) for a.e. t 2 D and for
each bounded subset Z of E, then the equation (3) has a solution x 2 Lp(J;E).

Proof. Putting f(t; s; x) = Q(t; s)'(s; x) we observe that from 5Æ and 6Æ it
follows that the corresponding operator F satis�es 4Æ. Moreover, f satis�es (12)
with h(t; s; u) = kQ(t; s)kc(s)ul. Hence Theorem 5 is an immediate consequence of
Theorem 4.
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