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ON THE SPECTRAL RADIUS OF CONNECTED GRAPHS

Richard A. Brualdi and Ernie S. Solheid

Abstract. We prove a general theorem about the maximum spectral radius of connected
graphs with n vertices and e edges and use it to determine the graphs with maximum spectral
radius when e < n 4+ 5 and n is sufficiently large.

1. Introduction. Let G(n,e) be the set of all graphs with n vertices and e
edges in which the vertices are labeled 1,2,...,n. Those graphs in G(n,e) which
are connected form a subset which we denote by H(n,e). The spectrum of a graph
in G(n, e) is taken to be the spectrum of its adjacency matric A = Ag = [a;;] which
is defined in the usual way as follows. A is a matrix of 0's and 1’s in which a;; =1
if and only if there is an edge joining vertices ¢ and j (1 < 4,7 < n). In particular,
A is a symmetric matrix with zero trace. The spectral radius p(G) of the graph G
is defined to be the spectral radius p(A) of A, that is the maximum absolute value
of an eigenvalue of A. By the Perron-Frobenius theory of nonnegative matrices [3],
p(A) is itself an eigenvalue of A.

In [1] Brualdi and Hoffman investigated the maximum spectral radius g(n, e)
of a graph in G(n,e) and showed in particular that for G = G(n, e), p(G) = g(n,e)
only if after possibly relabeling the vertices of G, the adjacency matrix A = [a;;]
of G satisfies

(1.1) If1<r<s<n and ars =1, then ag =1 for all ¥ and 1

with k<1, 1<k<r, and 1< <s.
Let G(n, e) denote the subset of G(n, e) consisting of those graphs whose adjacency
matrices A = [a;;] satisfy (1.1), and let g*(n, e) be the maximum spectral radius of

a graph in G*(n,e). An example of a graph whose adjacency matrix satisfies (1.1)
is given in Figure 0. The result of [1] cited above can be restated

(1.2) g(n,e) = g*(n,e),
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and p(G) < g*(n,e) if the vertices of G cannot be labeled so that its adjacency
matrix satisfies (1.1).

In this paper we prove the analogue of (1.2) for #(n, e) and use it to determine
the graphs in H(n, e) with maximum spectral radius when e < n+5. In analogy with
the above, we let H * (n, e) denote the subset of H(n,e) whose adjacency matrices
satisfy (1.1), and we let h(n,e) and h*(n,e) denote respectively, the maximum
spectral radius for graphs in H(n,e) and H*(n,e).

2. The basic theorem. Let G € H*(n,e). Since G is connected there is an
edge joining vertex n and some vertex r with r < n. Since the adjacency matrix
A = [a;;] satisfies (1.1) it follows that a1, =1 for all k = 2,...,n and thus vertex
1 is joined to all other vertices. Note that a graph in G(n,e) with vertex 1 joined
to all other vertices is necessarily connected and thus is in #(n,e); if, in addition,
the graph is in G*(n, e), it belongs to H*(n, e).

In our proof of the theorem we shall make use of some well known properties
of symmetric and nonnegative matrices. These properties will be cited as needed.

THEOREM 2.1. Let G € H(n,e). Then p(G) < h*(n,e), with equality only if
the vertices of G can be labeled so that the resulting graph belongs to H*(n,e). In
particular h(n,e) = h*(n,e).

Proof. Let G € H(n,e) \ H*(n,e), and let A = [a;;] be the adjacency matrix
of G with p = p(A). Since G is connected, A is an irreducible matrix and hence A
has a positive eigenvector x = (x1,...,7,)! corresponding to the eigenvalue p. We
may choose z so that zfx = 1. After possibly relabeling the vertices of G, we may
assume that the components of x are monotone nonincreasing. Thus

(2.1) Ax = px, x1 >29> "> 25 >0.

Case 1. a1 = -~ =ai, = 1.

Since G & H*(n, e), there exist integers r and s with 1 < r < s < n such that
ars+1 = 1 and either a,s = 0 or a,_1,5s+1 = 0. Suppose a,s = 0. Then we argue
as in [1]. Let B be the matrix obtained from A by switching the entries a,s and
ar,s+1 and by switching the entries a,, and as41,,. Then B is the adjacency matrix
of a graph in H(n,e) (since the non-diagonal entries in its first row are all 1). We
calculate that

(2.2) 'Br — 2' Az = 2z, (x5 — 2511) > 0.
Suppose equality holds in (2.2) Then !Bz = x' Az = p so that
(2.3) Bx = pxr = Az.
But calculating the s*” component of Bz, we see that

(Bx)s = (Az)s + xp > (Az)s = pxss.

This contradicts (2.3) and hence 2t Bx > 2t Az = p. Tt follows from the maximum
characterization of p for symmetric matrices [5] that p(B) > p. A similar conclusion
holds when a,_1 s4+1 = 0. Hence in this case, when G & H%st(n, e), p(G) < h(n,e).
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Case 2. a;; = 0 for some j with 1 < j > n.

Determine k so that a1 = -+ = a1 = 1 and a1 x4+1 = 0. We show how
to determine a graph H € #H(n,e) whose adjacency matrix B = [b;;] satisfies
bi21 =+ =big = b1 41 = 1 and p(G) < p(H). Since G is connected, there exists

an elementary chain v which connects vertex 1 to vertex k + 1. Let p be the first
vertex on v with p > k. Let ¢ be the vertex of 4 which immediately precedes p.
Let G be the graph obtained from G by deleting the edge [¢,p] and let H be be
obtained from G’ by adding the edge [1, k + 1]. The adjacency matrix B = [b;;] of
H satisfies bip = -+ = by y+1 = 1. We consider two subcases.

Subcase 2.1. p =k + 1.

Since there is no edge in G joining 1 and k + 1, it follows that 2 < ¢ < k and
hence 1 and ¢ are joined by an edge in G. Thus 1 and q are in the same connected
component of G' which implies that H is connected. We calculate that

(2.4) 2'Bx — o' Ar = 2441 (21 — 24) > 0.
Supose equality holds in (2.4). Then it follows that (2.3) holds again. But
(Bl’)l = (Al‘)l +£L’k+1 > (Al‘)l,

a contradiction. Thus strict inequality holds in (2.4).
Subcase 2.2. p >k + 1.

First suppose that ¢ = 1. Since p and k + 1 are joined by a chain in G',
p and k + 1 are in the same connected component of G’ and it follows that H is
connected. We calculate that

(2.5) 2'Bx — o' Az = 21 (241 — xp) > 0,

and as in the above subcase we conclude that strict inequality holds in (2.4).

Now suppose ¢ > 1. Since 1 and ¢ are joined by a chain in G’, we obtain that
H is connected and calculate that

(2.6) 2'Bx — 2" Az = 2(z1 211 — T4Tp) = 2k 41 (71 — T4) + 224 (Tpy1 — 7p) > 0.

As above we conclude that strict inequality holds in (2.6).

Thus in this case the matrix B and positive eigenvector z of A satisfy
z'Bx > 2t Az = p,

and we conclude as in Case 1, that p(B) > p. Hence p(G) < h(n,e).
Combining cases 1 and 2, we obtain the theorem. O

By the star S,, we shall mean the labelled graph in H*(n,n — 1) drawn in
Figure 1. A star with n vertices is any graph isomorphic to S,,.

COROLLARY 2.2. Let G be a connected graph with n vertices and e edges
having the largest possible spectral radius h(n,e). Then G contains a star as a
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spanning tree, and the vertices of G can be labeled so that its adjacency matriz
satisfies (1.1).

COROLLARY 2.3. Let GinH(n,e) satisfy p(G) = h(n,e). Let (x1,...,z,)"
be the positive eigenvector corresponding to the eigenvalue h(n,e) of the adjacency
matric A of G. If r is such that x, = max(z; : 1 < i < n), then a,; = 1 for
j=1,...,nand j #£r.

In the next section we use Theorem 2.1 to determine the graphs in H(n,e)
which have the largest spectral radius when e < n + 5.

3. Graphs with largest spectral radius. Let G be a tree with n vertices,
that is, a graph in #H(n,e) with e = n — 1. It was shown by Collatz and Singowitz
[2] and later by Lovasz and Pelikan [4] that p(G) < +/n — 1 with equality if and
only if G is a star with n vertices. We note here that this result is a special case of
Corollary 2.2 which we state as follows.

THEOREM 3.1. h(n,n — 1) = /n—1. Moreover, for G € H(n,n — 1),
p(G) =+v/n—1, if and only if G is a star with n vertices.

For later use we observe the following. Let e > n and let G € H*(n,e). Then
as already observed the adjacency matrix A = [a;;] of G satisfies a12 = -+ = a1p =
1, and G contains the star S,, as a spanning subgraph. Since e > n, it now follows
from the theory of nonnegative matrices [3] that

p(G) > p(Sy) = vn — 1.

In our figures to follow all graphs belong to H*(n,e) for some e and hence
their adjacency matrices satisfy (1.1). The adjacency matrices are used to calculate
the characteristic polynomials given.

THEOREM 3.2. Fore =n, n+ 1, and n + 2, the maximum spectral radius
h(n,e) of graphs in H(n,e) occurs uniquely as the spectral radius for those graphs
1somorphic to the graphs in Figures 2, 3, and 4, respectively.

Proof: By Theorem 2.1. a graph in H(n, e) with maximum spectral radius is
isomorphic to a graph in H*(n,e). Hence it suffices to determine which graphs in
H*(n, e) have the largest spectral radius. Recall that a graph in #*(n,e) has the
star S, as a spanning subgraph and more generally, its adjacency matrix A = [a;;]
satisfies (1.1).

e =n: Here n > 3. The only graph in #*(n,n) is the graph in Fig. 2.

e =n+1: Here n > 4. Up to isomorphism there are only two graphs in H(n,n+ 1)
which have a star as a spanning tree. Only one of these, namely the graph in Fig.
3, belongs to H*(n,n + 1).

e = n + 2: Here n > 4. There are only two graphs in %*(n,n + 2), namely the
graph G in Figure 4 and the graph G5 in Figure 5 (when n > 5). The spectral
radius p(G1) of G is the maximum root of

©01(A) =A% =207 — (n — A+ 2(n — 4);
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while p(Gs) is the maximum root of ps(\) = A* — (n 4+ 2)A%2 — 6\ + 3(n — 5). We
calculate that s (X) — (A+2)¢1(A) = A2 — (n— 1), which is positive for A\ > v/n — 1.
Since p(G2) > +/n — 1, it follows that p(G1) > p(Gs). O

For e = n+ 3, n + 4, and n + 5, we obtain the following characterization of
the graph in H(n,e) with maximum spectral radius valid for n sufficiently large.

THEOREM 3.3. Fore=n+3, n+4, and n + 5 and for n sufficiently large,
the mazimum spectral radius h(n,e) of graphs in H(n+e) occurs uniquely for those
graphs isomorphic to the graph in Figures 6, 7, and 8 respectively.

Proof. As in the proof of Theorem 3.2. it suffices to determine which graphs
in H*(n,e) have the largest spectral radius.

e =n+3: Here n > 5. There are exactly two graphs in H*(n,n + 3), the graph G;
in Fig. 6 and the graph G in Fig. 9.

The maximum root of p1(\) = A — (n + 3)A7™8\ + 4(n — 6) equals p(G1)

while the maximum root of

©a(A) = A% — (n 4+ 3)AT — 10A% + (4n — 21)A\% + (2n — &)\ — (n — 5)
equals p(G2). Since ¢1(A) has even degree, p1(A) > 0 for negative A with |A| large.
But

p1(—vVn—-2)=—(n+14) +8/n—-2<0 for large n.

Hence ¢ (\) has a root which is less than —+/n — 2. It follows from Schur’s inequal-
ity that p(G1) < v/n + 8 for n large. Similarly one shows that p(G2) < v/n + 8.
Hence vn — 1 < p(G1), p(G2) < v/n + 8.

Now let f(X) = pa(A) — A2p1(A) = =273 + 3X2 +2(n — 4)A — (n — 5). Then
f(/n—1)=—6yn—142n+2 > 0 for large n. Similarly f(v/n + 8) > 0 for large
n. Now

f'N) = =6X2+6X+2(n—4) =0 when \=(3+12n—39)/6.
Since (3 +v/12n —39)/6 < v/n — 1 for n large, it follows that f'(A) < 0 for A >

vn — 1 and n large. Hence f(A) > 0 for vVn —1 < XA < +/n+ 8 when n is large. It
now follows that p(G1) > p(G>) for n sufficiently large.

e =n +4: Here n > 5. In this case there are exactly three graphs in H*(n,n + 4).
These are the graph G5 in Fig. 7 (when n > 7), the graph G4 in Fig. 10 (when
n > 6), and the graph G5 in Fig. 11.

The spectral radii of the graphs G3, G4, and G5 are, respectively, the maxi-
mum roots of

@3(A) = A — (R +4)X> — 10X+ 5(n — 7)
@a(A) =A% — (n+4)X* — 12X° + (5n — 29)A° + 2(n — 4)X — 2(n — 6)
5(A) = X° = (n+ 4)N* — 14X° + (5n — 31)A + 4(n — 5).
We begin by comparing p(Gz) and p(G4). Since @3(A) has even degree,
©3(A) > 0 for negative A large. But
w3(—vVn —2) = —(n+23) + 10v/n — 2 < 0 for large n.
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Hence ¢3(\) has a root which is less than —y/n — 2. Schur’s inequality implies that
p(G3) < v/n+ 10 for n large. Similarly one shows that p(G4) < v/n+ 10 for n
large. Thus vVn — 1 < p(G3), p(G4) < v/n + 10.

Let f(A) = pa(A) —A2p3(\) = —2X3 4+ 612 +2(n—4)\—2(n—6). We calculate
that f(v/n —1) = —6v/n —1+4n + 6 > 0 for large n. Also f(v/n+ 10) > 0 for

large n. Now
f'N) = =6 2 +120+2(n—4) =0 when A= (3++3n—3)/3.

Since (34+v/3n — 3/3 < v/n — 1 for n large, it follows that f'(A\) < 0for A > v/n —1
for n large. Hence f(A) > 0 for v/n —1 < A < /n + 10 when n is large. Thus
p(G3) > p(Gy) for n sufficiently large.

We now compare p(Gs) and p(Gs). Since ps(A) has odd degree, p5(A) < 0
for negative A with |A| large. But

vs(—vn—2)=(n—9)vVn—2—-10n+8 > 0 for large n.

Hence ¢5(\) has a root which is less than —v/n — 2. As above we obtain p(G5) <
vn +10. Thus vn — 1 < p(G5) < v/n + 10. Let g(\) = p5(A) —Ap3(A) = —4(A\2 —
A —(n—35)). Then g(A) =0 when A = (1 4+ v/4n —19)/2.

Since (1 + v/4n —19)/2 is greater than both v/n — 1 and v/n + 10 for n suf-
ficiently large, it follows that g(A\) > 0 for vn — 1 < A < +/n+ 10 when n is large.
Thus p(G3) > p(Gs) for n sufficiently large.

e =n + 5: We must have n > 5. There are exactly four graphs in H*(n,n + 5).
These are the graph Gg in Fig. 8 (when n > 8), G in Fig. 12 (when n > 6), Gg in
Fig. 13 (when n > 7), and Gy in Fig. 14.

Let
0e(A) = X' — (n +5)A% — 12\ + 6(n — 8)
or(A) = A¥ — (n +5)A* — 16)A% + (6n — 38)A% + 4(n — 5)A — 2(n — 6)
0s(N) = A% — (n +5)A* — 140% + (6n — 39)A? + 2(n — 4)A — 3(n = 7)
Po(A) = A% =302 — (n — 1)A + 3(n — 5).

We compare p(Gg) with each of p(Gr), p(Gs), and p(Gy).

p(Gg) and p(Gr): Since pg(A) has even degree, pg(A) > 0 for negative A with |\
large. But g(—vn —2) = —(n + 34) + 12¢/n — 2 < 0 for large n. Hence ¢g(\)

has a root which is less than —y/n — 2. It then follows from Schur’s inequality that
p(Gs) < +v/n + 12 for n large. Similarly we obtain p(G7) < v/n + 12. Hence
vn —1<p(Gs), p(Gr) < Vn+12.

Now let f(A) = ¢7(A) — A2pg(N) = —4X3 + 10A% + 4(n — 5)X — 2(n — 6). Then
f(¥Yn—-1) = =16/n— 1+ 8n + 2 > 0 for large n. Similarly f(v/n +12) > 0 for

large n. Now

f'(A) = =120 + 20\ + 4(n — 5) = 0 when XA = (5 ++/12n — 35)/6.
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Since (5 +v/12n —35)/6 < v/n — 1 for n large, it follows that f'(A) < 0 for A >

vn —1 and n large. Hence f(A) > 0 for v/n — 1 < XA < v/n+ 12 when n is large.
It now follows that p(Gg) > p(G7) for n sufficiently large.

p(Gs) and p(Gs): Let
g(A) = @s(A) — Mg (A) = —2X* + 9A? + (2n — 8)A — 3(n — 7).
Since ¢g(—v/n — 2) < 0, we obtain as above that vn — 1 < p(Gg) < /n + 12. We

calculate that
g(ﬁ) =—6vVn—14+6n+12>0 for large n,
and similarly that g(v/n + 12) > 0 for large n. Now
g (\) =—-2(3X2 -9\ — (n—4)) =0 when X = (94 v/12n + 33)/6.

Since (9 ++v/12n+ 33)/6 < v/n — 1 for n large, it follows as above that p(Gg) >
p(Gs) for n sufficiently large.

p(Gs) and p(Gy): We calculate that
A+ 3)ps(A) — 95(\) — 13X2 + 30— 3 > 0 for all \.

Hence p(Gs) > p(Gy).
This completes the proof of the theorem. O

In the case e = n + 5, we have verified numerically that the graph in Figure
14 has a larger spectral radius than the graph in Figure 8 for n < 25. Similarly, in
the cases e = n + 3 and e = n + 4, for small values of n, the graphs of Figure 6 and
7 do not have the largest spectral radius. Thus the conclusions of Theorem 3.3 do
not hold for all n.

We conclude with the following conjecture. Let e = n + k where £ > 0.
We have verified that for £ = 0,1,3,4,5 and n sufficiently large, there is, up to
isomorphism, exactly one graph in H(n,n + k) with maximum spectral radius and
it is the graph obtained from the star S,, by adding the edges from vertex 2 to each
of vertices 3,...,k+ 3. We conjecture that the same conclusions hold for all k& with

k# 2.
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011110 2
101100 ]
i i g (]; g g 1 4 ® 6 Figure 0. A graph in G*(n, e) and its
100000 5 adjacency matrix.
000000 2
1 . Figure 1. The Star S,,.
n
2 Figure 2. The graph in H*(n,n) with
: 1_ : n maximum spectral radius. Its char-
——en acteristic polynomial is A" ~*(\ + 1)
3 (A3 = A2 = (n— DA+ (n—3)).

Figure 3. The graph in H*(n,n + 1)
with maximum spectral radius. Its
characteristic polynomial is

A=t (AL = (n+ 1)A2 — A\ +2(n — 4)).

Figure 4. The graph in H*(n,n + 2)
with maximum spectral radius. Its
characteristic polynomial is A" 5 (A+
12N =222 — (n— DA +2(n — 4)).

Figure 5. A graph in H*(n,n + 2).
Its characteristic polynomial is \»~*
(A = (n+2)A2 —6X +3(n — 5)).

Figure 6. The graph in H*(n,n + 3)
with maximum spectral radius for n
sufficiently large. Its characteristic
polynomial is A" 72(A* — (n + 3)\? —
8\ +4(n — 6)).

Figure 7. The graph in H*(n,n + 4)
with maximum spectral radius for n
sufficiently large. Its characteristic
polynomial is A"~*(\* — (n + 4)\2 —
10A + 5(n = 7)).
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Figure 8. The graph in H*(n,n + 5)
with maximum spectral radius for n
sufficiently large. Its characteristic
polynomial is A"~ 4(A* — (n + 5)\2 —
12X + 6(n — 8)).

Figure 9. The graph in H*(n,n + 3).
Its characteristic polynomial is
A6 (NS — (n 4 3)AT — 10A% + (4n —
21)A2 +2(n — 8))A — (n — 5)).

Figure 10. The graph in H*(n,n+4).
Its characteristic polynomial is
A6 (X6 — (n+ )\t — 1203 — (5n —
29)A2 +2(n — 4)\ — 2(n — 6)).

Figure 11. A graph in H*(n,n + 4).
Its characteristic polynomial is

A5 (NP — (n+4)A3 — 1402 + (5n —
3D)A + (4n — 5)).

Figure 12. The graph in H*(n,n + 3)
Its characteristic polynomial is
APO6(N6 — (n 4+ 5)A* — 1673 + (6n —
38)A? +4(n — 5)A — 2(n — 6)).

Figure 13. The graph in H*(n,n +4)
Its characteristic polynomial is
AP6(NE — (n + 5)A* — 1403 + (6n —
39N+ (2n —8)A —3(n—T7)).

Figure 14. The graph in H*(n,n +5)
Its characteristic polynomial is
AP+ 1303 =302 — (n— A +
3(n —5)).
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