ON THE SPECTRAL RADIUS OF CONNECTED GRAPHS

Richard A. Brualdi and Ernie S. Solheid

Abstract. We prove a general theorem about the maximum spectral radius of connected graphs with n vertices and e edges and use it to determine the graphs with maximum spectral radius when $e \le n + 5$ and n is sufficiently large.

1. Introduction. Let $\mathcal{G}(n, e)$ be the set of all graphs with n vertices and e edges in which the vertices are labeled $1, 2, \ldots, n$. Those graphs in $\mathcal{G}(n, e)$ which are connected form a subset which we denote by $\mathcal{H}(n, e)$. The spectrum of a graph in $\mathcal{G}(n, e)$ is taken to be the spectrum of its adjacency matrix $A = A_G = [a_{ij}]$ which is defined in the usual way as follows. A is a matrix of 0's and 1's in which $a_{ij} = 1$ if and only if there is an edge joining vertices i and j $(1 \le i, j \le n)$. In particular, A is a symmetric matrix with zero trace. The spectral radius $\rho(G)$ of the graph G is defined to be the spectral radius $\rho(A)$ of A, that is the maximum absolute value of an eigenvalue of A. By the Perron-Frobenius theory of nonnegative matrices [3], $\rho(A)$ is itself an eigenvalue of A.

In [1] Brualdi and Hoffman investigated the maximum spectral radius g(n, e)of a graph in $\mathcal{G}(n, e)$ and showed in particular that for $G = \mathcal{G}(n, e)$, $\rho(G) = g(n, e)$ only if after possibly relabeling the vertices of G, the adjacency matrix $A = [a_{ij}]$ of G satisfies

(1.1) If $1 \le r < s \le n$ and $a_{rs} = 1$, then $a_{kl} = 1$ for all k and 1 with k < 1, $1 \le k \le r$, and $1 \le l \le s$.

Let $\mathcal{G}(n, e)$ denote the subset of $\mathcal{G}(n, e)$ consisting of those graphs whose adjacency matrices $A = [a_{ij}]$ satisfy (1.1), and let $g^*(n, e)$ be the maximum spectral radius of a graph in $\mathcal{G}^*(n, e)$. An example of a graph whose adjacency matrix satisfies (1.1) is given in Figure 0. The result of [1] cited above can be restated

(1.2)
$$g(n,e) = g^*(n,e),$$

Research partially supported by National Science Foundation Grant No.: DMS — 8320189. AMS Subject Classification (1980): Primary 05C50

and $\rho(G) < g^*(n, e)$ if the vertices of G cannot be labeled so that its adjacency matrix satisfies (1.1).

In this paper we prove the analogue of (1.2) for $\mathcal{H}(n, e)$ and use it to determine the graphs in $\mathcal{H}(n, e)$ with maximum spectral radius when $e \leq n+5$. In analogy with the above, we let $\mathcal{H} * (n, e)$ denote the subset of $\mathcal{H}(n, e)$ whose adjacency matrices satisfy (1.1), and we let h(n, e) and $h^*(n, e)$ denote respectively, the maximum spectral radius for graphs in $\mathcal{H}(n, e)$ and $\mathcal{H}^*(n, e)$.

2. The basic theorem. Let $G \in \mathcal{H}^*(n, e)$. Since G is connected there is an edge joining vertex n and some vertex r with r < n. Since the adjacency matrix $A = [a_{ij}]$ satisfies (1.1) it follows that $a_{1k} = 1$ for all k = 2, ..., n and thus vertex 1 is joined to all other vertices. Note that a graph in $\mathcal{G}(n, e)$ with vertex 1 joined to all other vertices is necessarily connected and thus is in $\mathcal{H}(n, e)$; if, in addition, the graph is in $\mathcal{G}^*(n, e)$, it belongs to $\mathcal{H}^*(n, e)$.

In our proof of the theorem we shall make use of some well known properties of symmetric and nonnegative matrices. These properties will be cited as needed.

THEOREM 2.1. Let $G \in \mathcal{H}(n, e)$. Then $\rho(G) \leq h^*(n, e)$, with equality only if the vertices of G can be labeled so that the resulting graph belongs to $\mathcal{H}^*(n, e)$. In particular $h(n, e) = h^*(n, e)$.

Proof. Let $G \in \mathcal{H}(n, e) \setminus \mathcal{H}^*(n, e)$, and let $A = [a_{ij}]$ be the adjacency matrix of G with $\rho = \rho(A)$. Since G is connected, A is an irreducible matrix and hence Ahas a positive eigenvector $x = (x_1, \ldots, x_n)^t$ corresponding to the eigenvalue ρ . We may choose x so that $x^t x = 1$. After possibly relabeling the vertices of G, we may assume that the components of x are monotone nonincreasing. Thus

(2.1)
$$Ax = \rho x, \quad x_1 \ge x_2 \ge \cdots \ge x_n > 0.$$

Case 1. $a_{12} = \cdots = a_{1n} = 1$.

Since $G \notin \mathcal{H}^*(n, e)$, there exist integers r and s with 1 < r < s < n such that $a_{r,s+1} = 1$ and either $a_{rs} = 0$ or $a_{r-1,s+1} = 0$. Suppose $a_{rs} = 0$. Then we argue as in [1]. Let B be the matrix obtained from A by switching the entries a_{rs} and $a_{r,s+1}$ and by switching the entries a_{sr} and $a_{s+1,r}$. Then B is the adjacency matrix of a graph in $\mathcal{H}(n, e)$ (since the non-diagonal entries in its first row are all 1). We calculate that

(2.2)
$$x^{t}Bx - x^{t}Ax = 2x_{r}(x_{s} - x_{s+1}) \ge 0$$

Suppose equality holds in (2.2) Then $x^t B x = x^t A x = \rho$ so that

$$Bx = \rho x = Ax$$

But calculating the s^{th} component of Bx, we see that

$$(Bx)_s = (Ax)_s + x_r > (Ax)_s = \rho x_s.$$

This contradicts (2.3) and hence $x^t Bx > x^t Ax = \rho$. It follows from the maximum characterization of ρ for symmetric matrices [5] that $\rho(B) > \rho$. A similar conclusion holds when $a_{r-1,s+1} = 0$. Hence in this case, when $G \notin \mathcal{H}^a st(n,e)$, $\rho(G) < h(n,e)$.

Case 2. $a_{ij} = 0$ for some j with $1 < j \ge n$.

Determine k so that $a_{12} = \cdots = a_{1k} = 1$ and $a_{1,k+1} = 0$. We show how to determine a graph $H \in \mathcal{H}(n,e)$ whose adjacency matrix $B = [b_{ij}]$ satisfies $b_{121} = \cdots = b_{1k} = b_{1,k+1} = 1$ and $\rho(G) < \rho(H)$. Since G is connected, there exists an elementary chain γ which connects vertex 1 to vertex k + 1. Let p be the first vertex on γ with p > k. Let q be the vertex of γ which immediately precedes p. Let G be the graph obtained from G by deleting the edge [q,p] and let H be be obtained from G' by adding the edge [1, k + 1]. The adjacency matrix $B = [b_{ij}]$ of H satisfies $b_{12} = \cdots = b_{1,k+1} = 1$. We consider two subcases.

Subcase 2.1. p = k + 1.

Since there is no edge in G joining 1 and k + 1, it follows that $2 \le q \le k$ and hence 1 and q are joined by an edge in G. Thus 1 and q are in the same connected component of G' which implies that H is connected. We calculate that

(2.4)
$$x^{t}Bx - x^{t}Ax = 2x_{k+1}(x_{1} - x_{q}) > 0$$

Suppose equality holds in (2.4). Then it follows that (2.3) holds again. But

 $(Bx)_1 = (Ax)_1 + x_{k+1} > (Ax)_1,$

a contradiction. Thus strict inequality holds in (2.4).

Subcase 2.2. p > k + 1.

First suppose that q = 1. Since p and k + 1 are joined by a chain in G', p and k + 1 are in the same connected component of G' and it follows that H is connected. We calculate that

(2.5)
$$x^{t}Bx - x^{t}Ax = 2x_{1}(x_{k+1} - x_{p}) \ge 0$$

and as in the above subcase we conclude that strict inequality holds in (2.4).

Now suppose q > 1. Since 1 and q are joined by a chain in G', we obtain that H is connected and calculate that

(2.6)
$$x^{t}Bx - x^{t}Ax = 2(x_{1}x_{k+1} - x_{q}x_{p}) = 2x_{k+1}(x_{1} - x_{q}) + 2x_{q}(x_{k+1} - x_{p}) \ge 0.$$

As above we conclude that strict inequality holds in (2.6).

Thus in this case the matrix B and positive eigenvector x of A satisfy

$$x^t B x > x^t A x = \rho$$

and we conclude as in Case 1, that $\rho(B) > \rho$. Hence $\rho(G) < h(n, e)$.

Combining cases 1 and 2, we obtain the theorem. \Box

By the star S_n we shall mean the labelled graph in $\mathcal{H}^*(n, n-1)$ drawn in Figure 1. A star with n vertices is any graph isomorphic to S_n .

COROLLARY 2.2. Let G be a connected graph with n vertices and e edges having the largest possible spectral radius h(n, e). Then G contains a star as a spanning tree, and the vertices of G can be labeled so that its adjacency matrix satisfies (1.1).

COROLLARY 2.3. Let $Gin\mathcal{H}(n, e)$ satisfy $\rho(G) = h(n, e)$. Let $(x_1, \ldots, x_n)^t$ be the positive eigenvector corresponding to the eigenvalue h(n, e) of the adjacency matrix A of G. If r is such that $x_r = \max(x_i : 1 \leq i \leq n)$, then $a_{rj} = 1$ for $j = 1, \ldots, n$ and $j \neq r$.

In the next section we use Theorem 2.1 to determine the graphs in $\mathcal{H}(n, e)$ which have the largest spectral radius when $e \leq n + 5$.

3. Graphs with largest spectral radius. Let G be a tree with n vertices, that is, a graph in $\mathcal{H}(n, e)$ with e = n - 1. It was shown by Collatz and Singowitz [2] and later by Lovász and Pelikán [4] that $\rho(G) \leq \sqrt{n-1}$ with equality if and only if G is a star with n vertices. We note here that this result is a special case of Corollary 2.2 which we state as follows.

THEOREM 3.1. $h(n, n-1) = \sqrt{n-1}$. Moreover, for $G \in \mathcal{H}(n, n-1)$, $\rho(G) = \sqrt{n-1}$, if and only if G is a star with n vertices.

For later use we observe the following. Let $e \ge n$ and let $G \in \mathcal{H}^*(n, e)$. Then as already observed the adjacency matrix $A = [a_{ij}]$ of G satisfies $a_{12} = \cdots = a_{1n} =$ 1, and G contains the star S_n as a spanning subgraph. Since $e \ge n$, it now follows from the theory of nonnegative matrices [3] that

$$\rho(G) > \rho(S_n) = \sqrt{n-1}.$$

In our figures to follow all graphs belong to $\mathcal{H}^*(n, e)$ for some e and hence their adjacency matrices satisfy (1.1). The adjacency matrices are used to calculate the characteristic polynomials given.

THEOREM 3.2. For e = n, n + 1, and n + 2, the maximum spectral radius h(n, e) of graphs in $\mathcal{H}(n, e)$ occurs uniquely as the spectral radius for those graphs isomorphic to the graphs in Figures 2, 3, and 4, respectively.

Proof: By Theorem 2.1. a graph in $\mathcal{H}(n, e)$ with maximum spectral radius is isomorphic to a graph in $\mathcal{H}^*(n, e)$. Hence it suffices to determine which graphs in $\mathcal{H}^*(n, e)$ have the largest spectral radius. Recall that a graph in $\mathcal{H}^*(n, e)$ has the star S_n as a spanning subgraph and more generally, its adjacency matrix $A = [a_{ij}]$ satisfies (1.1).

e = n: Here $n \ge 3$. The only graph in $\mathcal{H}^*(n, n)$ is the graph in Fig. 2.

e = n + 1: Here $n \ge 4$. Up to isomorphism there are only two graphs in $\mathcal{H}(n, n+1)$ which have a star as a spanning tree. Only one of these, namely the graph in Fig. 3, belongs to $\mathcal{H}^*(n, n+1)$.

e = n + 2: Here $n \ge 4$. There are only two graphs in $\mathcal{H}^*(n, n + 2)$, namely the graph G_1 in Figure 4 and the graph G_2 in Figure 5 (when $n \ge 5$). The spectral radius $\rho(G_1)$ of G_1 is the maximum root of

$$\varphi_1(\lambda) = \lambda^3 - 2\lambda^2 - (n-1)\lambda + 2(n-4);$$

while $\rho(G_2)$ is the maximum root of $\varphi_2(\lambda) = \lambda^4 - (n+2)\lambda^2 - 6\lambda + 3(n-5)$. We calculate that $\varphi_2(\lambda) - (\lambda+2)\varphi_1(\lambda) = \lambda^2 - (n-1)$, which is positive for $\lambda > \sqrt{n-1}$. Since $\rho(G_2) > \sqrt{n-1}$, it follows that $\rho(G_1) > \rho(G_2)$. \Box

For e = n + 3, n + 4, and n + 5, we obtain the following characterization of the graph in $\mathcal{H}(n, e)$ with maximum spectral radius valid for n sufficiently large.

THEOREM 3.3. For e = n + 3, n + 4, and n + 5 and for n sufficiently large, the maximum spectral radius h(n, e) of graphs in $\mathcal{H}(n+e)$ occurs uniquely for those graphs isomorphic to the graph in Figures 6, 7, and 8 respectively.

Proof. As in the proof of Theorem 3.2. it suffices to determine which graphs in $\mathcal{H}^*(n, e)$ have the largest spectral radius.

e = n + 3: Here $n \ge 5$. There are exactly two graphs in $\mathcal{H}^*(n, n+3)$, the graph G_1 in Fig. 6 and the graph G_2 in Fig. 9.

The maximum root of $\varphi_1(\lambda) = \lambda^4 - (n+3)\lambda^- 8\lambda + 4(n-6)$ equals $\rho(G_1)$ while the maximum root of

$$\varphi_2(\lambda) = \lambda^6 - (n+3)\lambda^4 - 10\lambda^3 + (4n-21)\lambda^2 + (2n-8)\lambda - (n-5)$$

equals $\rho(G_2)$. Since $\varphi_1(\lambda)$ has even degree, $\varphi_1(\lambda) > 0$ for negative λ with $|\lambda|$ large. But

$$\varphi_1(-\sqrt{n-2}) = -(n+14) + 8\sqrt{n-2} < 0$$
 for large n .

Hence $\varphi_1(\lambda)$ has a root which is less than $-\sqrt{n-2}$. It follows from Schur's inequality that $\rho(G_1) \leq \sqrt{n+8}$ for *n* large. Similarly one shows that $\rho(G_2) \leq \sqrt{n+8}$. Hence $\sqrt{n-1} \leq \rho(G_1), \ \rho(G_2) \leq \sqrt{n+8}$.

Now let $f(\lambda) = \varphi_2(\lambda) - \lambda^2 \varphi_1(\lambda) = -2\lambda^3 + 3\lambda^2 + 2(n-4)\lambda - (n-5)$. Then $f(\sqrt{n-1}) = -6\sqrt{n-1} + 2n + 2 > 0$ for large *n*. Similarly $f(\sqrt{n+8}) > 0$ for large *n*. Now

$$f'(\lambda) = -6\lambda^2 + 6\lambda + 2(n-4) = 0$$
 when $\lambda = (3 + \sqrt{12n - 39})/6.$

Since $(3 + \sqrt{12n - 39})/6 < \sqrt{n-1}$ for n large, it follows that $f'(\lambda) < 0$ for $\lambda \ge \sqrt{n-1}$ and n large. Hence $f(\lambda) > 0$ for $\sqrt{n-1} \le \lambda \le \sqrt{n+8}$ when n is large. It now follows that $\rho(G_1) > \rho(G_2)$ for n sufficiently large.

e = n + 4: Here $n \ge 5$. In this case there are exactly three graphs in $\mathcal{H}^*(n, n + 4)$. These are the graph G_3 in Fig. 7 (when $n \ge 7$), the graph G_4 in Fig. 10 (when $n \ge 6$), and the graph G_5 in Fig. 11.

The spectral radii of the graphs G_3 , G_4 , and G_5 are, respectively, the maximum roots of

$$\begin{split} \varphi_3(\lambda) &= \lambda^4 - (n+4)\lambda^2 - 10\lambda + 5(n-7) \\ \varphi_4(\lambda) &= \lambda^6 - (n+4)\lambda^4 - 12\lambda^3 + (5n-29)\lambda^2 + 2(n-4)\lambda - 2(n-6) \\ \varphi_5(\lambda) &= \lambda^5 - (n+4)\lambda^3 - 14\lambda^2 + (5n-31)\lambda + 4(n-5). \end{split}$$

We begin by comparing $\rho(G_3)$ and $\rho(G_4)$. Since $\varphi_3(\lambda)$ has even degree, $\varphi_3(\lambda) > 0$ for negative λ large. But

$$\varphi_3(-\sqrt{n-2}) = -(n+23) + 10\sqrt{n-2} < 0$$
 for large n .

Hence $\varphi_3(\lambda)$ has a root which is less than $-\sqrt{n-2}$. Schur's inequality implies that $\rho(G_3) \leq \sqrt{n+10}$ for *n* large. Similarly one shows that $\rho(G_4) \leq \sqrt{n+10}$ for *n* large. Thus $\sqrt{n-1} \leq \rho(G_3), \ \rho(G_4) \leq \sqrt{n+10}$.

Let $f(\lambda) = \varphi_4(\lambda) - \lambda^2 \varphi_3(\lambda) = -2\lambda^3 + 6\lambda^2 + 2(n-4)\lambda - 2(n-6)$. We calculate that $f(\sqrt{n-1}) = -6\sqrt{n-1} + 4n + 6 > 0$ for large *n*. Also $f(\sqrt{n+10}) > 0$ for large *n*. Now

$$f'(\lambda) = -6\lambda^2 + 12\lambda + 2(n-4) = 0$$
 when $\lambda = (3 + \sqrt{3n-3})/3$.

Since $(3 + \sqrt{3n - 3}/3 < \sqrt{n - 1}$ for n large, it follows that $f'(\lambda) < 0$ for $\lambda \ge \sqrt{n - 1}$ for n large. Hence $f(\lambda) > 0$ for $\sqrt{n - 1} \le \lambda \le \sqrt{n + 10}$ when n is large. Thus $\rho(G_3) > \rho(G_4)$ for n sufficiently large.

We now compare $\rho(G_3)$ and $\rho(G_5)$. Since $\varphi_5(\lambda)$ has odd degree, $\varphi_5(\lambda) < 0$ for negative λ with $|\lambda|$ large. But

$$\varphi_5(-\sqrt{n-2}) = (n-9)\sqrt{n-2} - 10n + 8 > 0$$
 for large n.

Hence $\varphi_5(\lambda)$ has a root which is less than $-\sqrt{n-2}$. As above we obtain $\rho(G_5) \leq \sqrt{n+10}$. Thus $\sqrt{n-1} \leq \rho(G_5) \leq \sqrt{n+10}$. Let $g(\lambda) = \varphi_5(\lambda) - \lambda \varphi_3(\lambda) = -4(\lambda^2 - \lambda - (n-5))$. Then $g(\lambda) = 0$ when $\lambda = (1 + \sqrt{4n-19})/2$.

Since $(1 + \sqrt{4n - 19})/2$ is greater than both $\sqrt{n - 1}$ and $\sqrt{n + 10}$ for n sufficiently large, it follows that $g(\lambda) > 0$ for $\sqrt{n - 1} \le \lambda \le \sqrt{n + 10}$ when n is large. Thus $\rho(G_3) > \rho(G_5)$ for n sufficiently large.

e = n + 5: We must have $n \ge 5$. There are exactly four graphs in $\mathcal{H}^*(n, n + 5)$. These are the graph G_6 in Fig. 8 (when $n \ge 8$), G_7 in Fig. 12 (when $n \ge 6$), G_8 in Fig. 13 (when $n \ge 7$), and G_9 in Fig. 14.

Let

$$\varphi_{6}(\lambda) = \lambda^{4} - (n+5)\lambda^{2} - 12\lambda + 6(n-8)$$

$$\varphi_{7}(\lambda) = \lambda^{6} - (n+5)\lambda^{4} - 16\lambda^{3} + (6n-38)\lambda^{2} + 4(n-5)\lambda - 2(n-6)$$

$$\varphi_{8}(\lambda) = \lambda^{6} - (n+5)\lambda^{4} - 14\lambda^{3} + (6n-39)\lambda^{2} + 2(n-4)\lambda - 3(n-7)$$

$$\varphi_{9}(\lambda) = \lambda^{3} - 3\lambda^{2} - (n-1)\lambda + 3(n-5).$$

We compare $\rho(G_6)$ with each of $\rho(G_7)$, $\rho(G_8)$, and $\rho(G_9)$. $\rho(G_6)$ and $\rho(G_7)$: Since $\varphi_6(\lambda)$ has even degree, $\varphi_6(\lambda) > 0$ for negative λ with $|\lambda|$ large. But $\varphi_6(-\sqrt{n-2}) = -(n+34) + 12\sqrt{n-2} < 0$ for large *n*. Hence $\varphi_6(\lambda)$ has a root which is less than $-\sqrt{n-2}$. It then follows from Schur's inequality that $\rho(G_6) \leq \sqrt{n+12}$ for *n* large. Similarly we obtain $\rho(G_7) \leq \sqrt{n+12}$. Hence

$$\sqrt{n-1} \le \rho(G_6), \ \rho(G_7) \le \sqrt{n+12}.$$

Now let $f(\lambda) = \varphi_7(\lambda) - \lambda^2 \varphi_6(\lambda) = -4\lambda^3 + 10\lambda^2 + 4(n-5)\lambda - 2(n-6)$. Then $f(\sqrt{n-1}) = -16\sqrt{n-1} + 8n + 2 > 0$ for large *n*. Similarly $f(\sqrt{n+12}) > 0$ for large *n*. Now

$$f'(\lambda) = -12\lambda^2 + 20\lambda + 4(n-5) = 0$$
 when $\lambda = (5 + \sqrt{12n - 35})/6$

50

Since $(5 + \sqrt{12n - 35})/6 < \sqrt{n - 1}$ for n large, it follows that $f'(\lambda) < 0$ for $\lambda \ge \sqrt{n - 1}$ and n large. Hence $f(\lambda) > 0$ for $\sqrt{n - 1} \le \lambda \le \sqrt{n + 12}$ when n is large. It now follows that $\rho(G_6) > \rho(G_7)$ for n sufficiently large.

 $\rho(G_6)$ and $\rho(G_8)$: Let

$$g(\lambda) = \varphi_8(\lambda) - \lambda^2 \varphi_6(\lambda) = -2\lambda^3 + 9\lambda^2 + (2n-8)\lambda - 3(n-7).$$

Since $\varphi_8(-\sqrt{n-2}) < 0$, we obtain as above that $\sqrt{n-1} \le \rho(G_8) \le \sqrt{n+12}$. We calculate that

$$g(\sqrt{n-1}) = -6\sqrt{n-1} + 6n + 12 > 0$$
 for large n ,

and similarly that $g(\sqrt{n+12}) > 0$ for large n. Now

$$g'(\lambda) = -2(3\lambda^2 - 9\lambda - (n-4)) = 0$$
 when $\lambda = (9 + \sqrt{12n + 33})/6$.

Since $(9 + \sqrt{12n + 33})/6 < \sqrt{n-1}$ for *n* large, it follows as above that $\rho(G_6) > \rho(G_8)$ for *n* sufficiently large.

 $\rho(G_6)$ and $\rho(G_9)$: We calculate that

$$(\lambda + 3)\varphi_9(\lambda) - \varphi_6(\lambda) - 13\lambda^2 + 3n - 3 > 0$$
 for all λ .

Hence $\rho(G_6) > \rho(G_9)$.

This completes the proof of the theorem. \Box

In the case e = n + 5, we have verified numerically that the graph in Figure 14 has a larger spectral radius than the graph in Figure 8 for $n \le 25$. Similarly, in the cases e = n + 3 and e = n + 4, for small values of n, the graphs of Figure 6 and 7 do not have the largest spectral radius. Thus the conclusions of Theorem 3.3 do not hold for all n.

We conclude with the following conjecture. Let e = n + k where $k \ge 0$. We have verified that for k = 0, 1, 3, 4, 5 and n sufficiently large, there is, up to isomorphism, exactly one graph in $\mathcal{H}(n, n + k)$ with maximum spectral radius and it is the graph obtained from the star S_n by adding the edges from vertex 2 to each of vertices $3, \ldots, k+3$. We *conjecture* that the same conclusions hold for all k with $k \ne 2$.

Figure 0. A graph in $\mathcal{G}^*(n, e)$ and its adjacency matrix.

Figure 1. The Star S_n .

Figure 2. The graph in $\mathcal{H}^*(n, n)$ with n maximum spectral radius. Its characteristic polynomial is $\lambda^{n-4}(\lambda + 1)$ $(\lambda^3 - \lambda^2 - (n-1)\lambda + (n-3)).$

Figure 3. The graph in $\mathcal{H}^*(n, n+1)$ with maximum spectral radius. Its characteristic polynomial is $\lambda^{n-4} \ (\lambda^4 - (n+1)\lambda^2 - 4\lambda + 2(n-4)).$

Figure 4. The graph in $\mathcal{H}^*(n, n+2)$ with maximum spectral radius. Its characteristic polynomial is λ^{n-5} (λ +1)²($\lambda^3 - 2\lambda^2 - (n-1)\lambda + 2(n-4)$).

Figure 5. A graph in $\mathcal{H}^*(n, n+2)$. Its characteristic polynomial is λ^{n-4} $(\lambda^4 - (n+2)\lambda^2 - 6\lambda + 3(n-5))$.

Figure 6. The graph in $\mathcal{H}^*(n, n+3)$ with maximum spectral radius for n sufficiently large. Its characteristic polynomial is $\lambda^{n-2}(\lambda^4 - (n+3)\lambda^2 - 8\lambda + 4(n-6))$.

Figure 7. The graph in $\mathcal{H}^*(n, n + 4)$ with maximum spectral radius for n sufficiently large. Its characteristic polynomial is $\lambda^{n-4}(\lambda^4 - (n+4)\lambda^2 - 10\lambda + 5(n-7))$.

Figure 8. The graph in $\mathcal{H}^*(n, n+5)$ with maximum spectral radius for n sufficiently large. Its characteristic polynomial is $\lambda^{n-4}(\lambda^4 - (n+5)\lambda^2 - 12\lambda + 6(n-8))$.

Figure 9. The graph in $\mathcal{H}^*(n, n+3)$. Its characteristic polynomial is $\lambda^{n-6} (\lambda^6 - (n+3)\lambda^4 - 10\lambda^3 + (4n - 21)\lambda^2 + 2(n-8))\lambda - (n-5))$.

Figure 10. The graph in $\mathcal{H}^*(n, n+4)$. Its characteristic polynomial is $\lambda^{n-6} (\lambda^6 - (n+4)\lambda^4 - 12\lambda^3 - (5n-29)\lambda^2 + 2(n-4)\lambda - 2(n-6)).$

Figure 11. A graph in $\mathcal{H}^*(n, n + 4)$. Its characteristic polynomial is $\lambda^{n-5} \ (\lambda^5 - (n+4)\lambda^3 - 14\lambda^2 + (5n - 31)\lambda + (4n - 5)).$

Figure 12. The graph in $\mathcal{H}^*(n, n+3)$ Its characteristic polynomial is $\lambda^{n-6}(\lambda^6 - (n+5)\lambda^4 - 16\lambda^3 + (6n-38)\lambda^2 + 4(n-5)\lambda - 2(n-6)).$

Figure 13. The graph in $\mathcal{H}^*(n, n+4)$ Its characteristic polynomial is $\lambda^{n-6}(\lambda^6 - (n+5)\lambda^4 - 14\lambda^3 + (6n - 39)\lambda^2 + (2n-8)\lambda - 3(n-7)).$

Figure 14. The graph in $\mathcal{H}^*(n, n+5)$ Its characteristic polynomial is $\lambda^{n-6}(\lambda+1)^3(\lambda^3-3\lambda^2-(n-1)\lambda+3(n-5)).$

Brualdi and Solheid

REFERENCES

- R. A. Brualdi and A. J. Hoffman, On the spectral radius of (0, 1)-matrices, Linear Algebra Appl. 65 (1985), 133-146.
- [2] L. Collatz and U. Singowitz, Spektren endlicher Graphen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 63-77,
- [3] F. R. Gantmacher, The Theory of Matrices, vol 2 (translated by K. A. Hirsch) Chelsea, New York, 1959.
- [4] L. Lovász and J. Pelikán, On the eigenvalues of trees, Period. Math. Hungar. 3 (1973), 175-182.
- [5] B. N. Parlett, *The Symmetric Eigenvalue Problem*, Prentice-Hall, Englewood Cliffs, N. J., 1980.

Department of Mathematics University of Wisconsin Madison, WI 53706 (Received 02 12 1985)

Department of Mathematics Bucknell University Lewisburg, PA 17837