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ON TWO OPEN PROBLEMS OF CONTRACTIVE MAPPINGS

V. Totik

Abstract. Two open problems are solved concerning the fixed points of contractive map-
pings. The first is an example of a shrinking mapping of the closed unit ball in a Banach space
without any fixed point. The second solves a question of B. Fischer.

1. Let (X,d) be a metric space, T : X — X a mapping of X into itself. T
is said to be shrinking if d(T'z,Ty) < d(z,y) for every z,y € X.

It is well known (see e.g. [3]) that if X is compact and T': X — X is a
shrinking mapping, then T has a fixed point. By a beautiful theorem of Browder
[1] the same conclusion holds provided X is the closed unit ball of a Hilbert
space and T is shrinking. In connection with these results D. R. Smart raised
the following question [3, p. 39]: “Does every shrinking mapping of the closed unit
ball in a Banach space have a fixed point?” The aim of this paragraph is to give
negative answer to this problem.

THEOREM 1. There exists a Banach space B and an affine shrinking mapping
T of the closed unit ball U of B into the boundary OU of U such that T does
not have any fized point.

Proof. Let ¢ = {z = {;}2, | lim &; = 0} be the space real se-
11— 00

quences converging to 0 with norm |jz|| = sup | x; |. Let B = ¢ and
i

T(x1,22,... ,&n,...) = (1,22/2+1/2, 222/3+1/3,..., (1-1/n)x,+1/n,...) ie.

T is defined by (T'z),) = (1—-1/n)zp,+1/n. If U is the unit ball in B, then clearly
T:U — 0U and T is affine. T is shringing. Let z = {x;}5°, y = {v:}°, = # y.
Then

0<e:=z—yll = |Zn, = Ynol

for some ng. Let N > 2 be so large that the inequalities

[al <e/4, lyal <e/t  (n>N)
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be satisfied. Now
2¢/4=¢/2 ifi>N

(Ta)i = (Tl = (L= 1/i)fas — ] < { LAl < 1L N i £ < N

ie.
1Tz =Tyl < (1 —-1/N)e,
and so T is really a shrinking mapping.

Finally T does not have any fixed point: if = {z;}{° where a fixed point
of T, then we would have

(]. — ]./Z)l‘l + ]./Z = (T:L’)Z =x;
i.e. x; =1 for all i, but the sequence {1}5° does not belong to B = ¢y.

We have proved our theorem.

2. In [2] B. Fischer made the following conjecture. Suppose S and T are
mapping of the complete matrix space X into itself, with either S or T' continuous,
satisfying the inequality

(1) d(Sz,TSy) < cdiam{z, Sz, Sy, TSy}

for all z,y in X, where 0 < ¢ < 1. Then S and T have a unique common fixed
point.

This conjecture has been open even for compact X. Now we show that it is
true for ¢ < 1/2 but false for ¢ > 1/2.

THEOREM 2. If X is complete, S : X — X, T : X — X with property (1),
where ¢ < 1/2, then S and T have a unique common fized point. On the other
hand, there are a four point X and S : X - X, T : X —» X mappings of X
without fized point satisfying

d(Sz, TSy) > 1/2 diam {z, Sz, Sy, T Sy}.

Thus, if @ < 1/2 we do not need any continuity assumption, and for a > 1/2
even the simultaneous continuity of S and T and the compactness of X do not
help.

Proof. To prove the first part of our theorem let zy € X be arbitrary and let
(T8)" %z, if n is even
" S(T8) "D/ gy, if n is odd.
By (1)

d(Z’QnJrl , 1‘2n) = d(STSiL’Qn,Q, TSZ’Qn,Q) S c diam{Smgn,g, TSZ’Qn,Q, STSI‘2n,2} =

= Cdiam{$2n—la Ton, ~T2n+1} < c(d(ZUQna 372n—1) + d(x2n+1: an))
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and thus
(2) A1, 2n) < /(1= )d(w20, 2301) (0> 1)

Similarly,

d(Tant2, Tant1) = d(STan, TST2,) < ¢ diam {2y, Tani1, T2np2} <

< c(d(®2nt1, Tan) + d(T2ny2, Tons1))
by which
(3) d(Tant2, Tant1) < (¢/(1 = ¢))d(Tant1, T2n)

Since ¢ < 1/2 we have ¢/(1 —¢) < 1, and so (2) and (3) imply that the sequence
Zn is a Cauchy sequnce and thus, by completeness, x,, — z(n — ooz € X). Using
again (1) we get

d(Sz, xony2) < ¢ diam{z, Sz, Tapy1, Tons2} <
c(d(Sz, z) + d(z, T2ny1) + d(T2ni1, T2ni2))

Letting here n — oo we obtain d(Sz, z) < cd(Sz, z) i.e. d(Sz,z) =0, Sz = z.
But then

d(z, Tz) =d(Sz,TSz) < ¢ diam{z,Sz, TSz} = cd(z, Tz)

ie. d(z,Tz) =0, Tz = z and thus z is a common fixed point of S and 7. The
uniqueness of the common fixed point follows easily from (1).

After this let us prove that the conjecture is false for ¢ = 1/2 and hence
also ¢ > 1.2. Let X = {A4,B,C,D} with d(A,D) = d(B,C) = d(B,D) =1 and
d(A,B) = d(C,D) = 2 (see the first figure) and let S and T be the two mapping
indicated below:

A‘I’R___z_——?B A B A B
N\ 71
X ! \ 7 7 S T
N 7

1 v 1l

{ 1// \\1 :

: // \\ |

D¥—-2-—Nc D c D

Neither S nor T have any fixed point. However, Sz € {D,C}, TSy €
{4, B} and so d(Sz, TSy) =1 for every z,y € X; furthermore

a) d(z,Szr) =2, ifzx=Corax=D
b) d(Sz,Sy) =2, if + A and y€ {B,D} or x =B and y € {4,C}
c) d(z,TSy)=2, if x=A and y € {A,C}or z =B and y € {B, D},
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i.e. in any case diam{z, Sz, Sy, TSy} = 2 and so (1) holds for every z,y € X with
c=1/2.
We have proved our theorem.
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