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ON SOME CURVATURE TENSORS OF COMPLEX ANALYTIC AND

LOCALLY DECOMPOSABLE RIEMANNIAN SPACES WITH (1F;2F )-
CONNECTION

Neda Stojkovi�c

1. Introduction. LetMn be any di�erentiable n-dimensional manifold and
let Tp(M) be the tangent space of the manifold M at any point p. The elements
of Tp(M) are called vectors and are denoted by Xp; Yp; Zp; . . . . The corresponding
C1 vector �elds are denoted by X; Y; Z; . . . . These vector �elds compose a real
vector space X(M). We denote by C1(M) the collection of all real valued C1

functions de�ned on M. More details about this and the notions mentioned below
can be found in [3], [5].

C1 connection r on a manifold M is a mapping

r :X(M)�X(M)! X(M)

(notation: r : (X;Y ) ! rXY ) such that for every f 2 C1(M); X;Y; Z 2 X(M)
the following equalities are valid

rX(Y + Z) = rXY +rXZ

rX+Y Z = r:
XZ +rY Z

rfXZ = frXZ(1.1)

rX(fY ) = (Xf)Y = frXY:

If A is any �eld of 1-forms, then we have

(1.2) (rXA)(Y ) = XA(Y )�A(rXY ):

Let r be any connection with torsion de�ned on a manifoldMn and X;Y 2

X(M). It is possible to de�ne two connections 1r and 2r so that we have

(1.3) 1
rXY = rXY

and

(1.4) 2
rXY = rXY + [X;Y ];
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where [X;Y ] is the commutator of vector �elds X;Y .

For connections 1r and 2r there exist four �elds of curvature tensors

1R(X;Y )Z; 2R(X;Y )Z; 3R(X;Y )Z and 4R(X;Y )Z [9], de�ned by the following
relations

1R(X;Y )Z =1
rX

1
rY Z �

1
rY

1
rXZ �

1
r[X;Y ]Z

2R(X;Y )Z =2
rX

2
rY Z �

1
rY

2
rXZ �

2
r[X;Y ]Z

3R(X;Y )Z =2
rX

1
rY Z �

1
rY

2
rXZ +r2

1rYX
Z �1

r2rXY Z;(1.5)

4R(X;Y )Z =2
rX

1
rY Z �

1
rY

2
rXZ +r2

2rY X
Z �1

r1rXY Z;(1.6)

The �rst Ricci transformation at any point p 2 M with respect to any pair
of vectors Yp; Zp 2 Tp(M) is the linear transformation

0

1RYp;Zp : Tp(M)! Tp(M)

de�ned by the formula

0

1RYp;Zp(Xp) =1R(Xp; Yp)Zp:

Ricci tensor 01R(Yp; Zp) of a manifold M at a point p is the bilinear mapping

Tp(M) � Tp(M)! R

given by the relation

(1.7) 0

1R(Yp; Zp) = tr 01RYp;Zp ;

where by tr we denote the trace of a linear mapping.

The second Ricci transformation at an arbitrary point p 2M with respect to
any pair of vectors Yp; Zp 2 Tp(M) is the linear transformation

00

1RYp;Zp : Tp(M)! Tp(M)

de�ned by the formula

00

1RYp;Zp(Xp) =1R(Yp; Xp)Zp:

The Ricci tensor R001 (Yp; Zp) of a manifoldM at point p is the bilinear map-
ping

Tp(M) � Tp(M)! R

given by the relation

(1.8) 00

1R(Yp; Zp) = tr001RYp;Zp :

The third Ricci transformation at a point p 2 M with respect to pair of
vectors Yp; Zp 2 Tp(M) is the linear transformation

000

1 RYp;Zp : Tp(M)! Tp(M)



O some curvature tensors of complex analytic and locally decomposable Riemannian. . . 219

de�ned by the formula

000

1 RXp;Zp(Xp) =1 R(Yp; Zp)Xp:

The Ricci tensor 0001 R(Yp; Zp) of a manifoldM at a point p is the bilinear mapping

Tp(M) � Tp(M)! R

given by the relation

(1.9) 000

1 R(Yp; Zp) = tr0001 RYp;Zp :

Ricci tensors corresponding to the other curvature tensors are de�ned analogously.

For brevity, when it is clear from the context what we mean, we will often
call \�elds of tensors" simply \tensors" and vestors will be denoted like �elds of
vectors without lower index p.

An almost complex structure on an evendimensional di�erentiable manifold
M

2n [1, 4] is a �eld of endomorphisms of the tangent spaces such that

(1.10) F 2 = �I;

where I denotes the identity endomorphism. Such a manifold is an almost complex
space.

A connection 0r is a symmetric aÆne F -connection if the following conditions
are ful�lled

0
rXY =0

rYX + [X;Y ];(1.11)

(0rXF )(Y ) = 0:

An almost complex manifold M is complex analytic if and only if its Nijenhuis
tensor vanishes [6], or if and only if there is a symmetric F -connection [7, 8].

A K�ahler space is an evendimensional manifold with almost complex structure
F and Riemannian metric g, which satis�es the following conditions

g(FX;FY ) = g(X;Y ) X;Y 2 X(M)

(0rXF )(Y ) = 0;(1.12)

0r being the Riemann-Christo�el connection formed with g.

An almost product structure on a manifoldMn [12] is a �eld F of endomor-
phisms of the tangent spaces such that

(1.13) F 2 = I:

A manifold with this structure is called an almost product space.

A locally product space [12] is an almost product space with symmetric F -
connection 0r, so that we have

(1.14) (0rXF )(Y ) = 0:
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An almost product manifoldMn is called a locally decomposable Riemannian
space [12] if in Mn a positive de�nite Riemannian metric tensor �eld g is given,
satisfying the conditions

F 2 = I; g(FX;FY ) = g(X;Y )

(0rXF )(Y ) = 0; X; Y 2 X(M);(1.15)

where 0r is the Riemann-Christofell connection formed with g.

A locally decomposable space can be covered by a separating coordinate sys-
tem [12], i.e. by a system of coordinate neighbourhoods (xi) such that in any

intersection of two coordinate neighbourhods (xi) and (xi
0

) we have

xa
0

= xa
0

(xa); xy
0

= xy
0

(xy);

where the indices a; b; c; d; . . . range over 1; 2; . . . ; p and the indices x; y; z; t; . . .
range over p+ 1; p+ 2; . . . ; p+ q = n. By Mp we denote the system of subspaces
de�ned by xy = 0, and by Mq the system of subspaces de�ned by xa = 0. Then
our space Mn is locally the product Mp �Mq of two spaces. With respect to a
separating coordinate system we also have

(F i
j ) =

�
Æab 0
0 �Æxy

�
:

Therefore

(1/16) ' = F i
i = p� q:

M. Prvanovi�c [10] has investigated covariant di�erentiation with respect to
the connections 1r and 2r on almost complex and almost product spaces and has
found that in a locally coordinate system

(1.17) �ijk =Æ�ijk +Ai
jk + !Ab

akF
a
j F

i
b + !Ab

jaF
a
k F

i
b + !Ai

abF
a
j F

b
k

(where Ai
jk is any tensor of covariant type 2 and contravariant type 1, F

i
j is either an

almost complex structure and ! = �1 or an almost product structure and ! = +1)
is the most general form of connection such that

(1rXF )(Y ) = (2rXF )(Y ) = (0rXF )(Y ):

This connection is called (1F;2 F )-connection. We have considered connections
induced by special (1F;2F )-connections on an almost complex spaces [2].

In this paper we suppose that 2A = A
F , where A is a �eld of 1-forms and
�nd the invariants for transformations de�ned by relations (2.1) and (2.2) for com-
plex analytic space and (3.2) and (3.3) for locally decomposable Riemannian space,
i.e. we obtain the tensors independent on the �eld A satisfying some conditions.
Further, in the sence of Klein's "Erlangen's" programm of geometry as the theory
of the invariants of certain group of transformations we investigate curvature ten-
sors 3R(X;Y )Z and 4R(X;Y )Z of this spaces. Especially, we �nd the conditions
of atness of the spaces mentioned above.
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2. Complex analytic space. LetM2n(n > 1) be a complex analytic space.
This means, by [6, 7, 8], that on this space there exists an almost complex structure
F and a symmetric aÆne F -connection 0r. We consider on this space M2n the
(1F;2F )-connection under the assumption

2Ak
ji = F k

j Ai;

whereAi is a �eld of 1-forms and F k
j is a �eld of tensors of almost complex structure.

In that case the (1F;2F )-connection given by the formula (1.17) has the form

�kji =
0 �kji + F k

j Ai +AaF
a
i Æ

k
j :

Using the notion of a tensor as a multilinear transformation and the de�nition of a
connection given in section 1., we can write this relation in the following way

rXY =0
rXY +A(X)F (Y ) +AF (X)A(Y )

and bearing in mind (1.3) and (1.4), we thus obtain the connections 1r;2r in the
following form

1
rXY =0

rXY +A(X)F (Y ) +AF (X)Y;(2.1)

2
rXY =0

rXY +A(Y )F (X) +AF (Y )X;(2.2)

Substituting (2.1) and (2.2) into (1.5), using (1.1) and (1.11), after some calculation
we get

3R(X;Y )Z = K(X;Y )Z + [A(0rY FZ)� YAF (Z) +AF (Y )AF (Z)]X+

+A(Y )AF (Z)F (X) + [A(0rY Z)� YA(Z) +AF (Y )A(Z)]F (X)�

�A(Y )A(Z)X � [A(0rXFY )�XAF (Y ) +AF (Y )AF (X)]Z�(2.3)

�A(Y )AF (X)F (Z)� [A(0rXY )�XA(Y ) +AF (Y )A(X)]F (Z)

+A(X)A(Y )Z;

where by K(X < Y )Z we denote the curvature tensor corresponding to the sym-
metric connection 0r:

(2.4) K(X;Y )Z =0
r
0
XrY Z �

0
r
0
YrXZ +0

rÆrY XZ �
0
rÆrXY Z:

Let us now prove the following theorem:

Theorem 2.1. The tensors

3R(X;Y )Z�
1

2(n� 1)
[03R(Y; Z)X�

0

3R(FY;Z)FX�
0

3R(X;Y )Z+03R(FX; Y )FZ]

is independent on 1-form A, which is either:

a) covariantly constant with respect to the connection 0r in any direction Y :

(0rYA)(X) = YA(X)�A(0rYX) = 0
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or

b) the covariant derivative of A with respect to the connection 0r in any
direction Y is equal to 0K(FX; Y )

(0rYA)(X) = YA(X)�A(0rYX) =0 K(FX; Y ):

Moreover, this tensor is equal to the tensor

K(X;Y )Z �
1

2(n� 1)
[0K(Y; Z)X �0 K(FY;Z)FX �0 K(X;Y )Z +0 K(FX; Y )FZ]:

Proof . Let us prove the theorem under the assumption a). Due to the as-
sumption, the 1-form A is covariantly constant with respect to the aÆne symmetric
F -connection 0r; using (1.2) we have

XA(Y )�A(0rXY ) = 0

and because of this relation the formula (2.3) has the form

3R(X;Y )Z = K(X;Y )Z + [AF (Y )AF (Z)�A(Y )A(Z)]X+

+ [A(Y )AF (Z) +AF (Y )A(Z)]F (X)� [AF (Y )AF (X)�(2.6)

�A(X)A(Y )]Z � [AF (Y )A(X) +A(Y )AF (X)]F (Z):

Now we de�ne the linear map

f :X(M2n)! X(M2n)

by the following relation

f(X) =3 R(X;Y )Z �K(X;Y )Z�

�[AF (Y )AF (Z)�A(Y )A(Z)]X � [A(Y )AF (Z) +AF (Z)A(Z)]F (X)

+[AF (Y )AF (X)�A(X)A(Y )]Z + [AF (Y )A(X) +A(Y )AF (X)]F (Z);

for any X;Y; Z 2 X(M2n).

Using the notion of �rst Ricci tensor, given by the relation (1.7), and relations
(1.10), (2.6) and

(2.7) tr I = 2n; trF = 0;

where I is the identity map, we can �nd the trace of the previously de�ned linear
map f , and from that we obtain

0

3R(Y; Z)�
0
K(Y; Z)� 2(n� 1)[AF (Y )AF (Z)�A(Y )A(Z)] = 0;

or

AF (Y )AF (Z)�A(Y )A(Z) =
1

2(n� 1)
[03R(Y; Z)�

0
K(Y; Z)];
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since by assumption we have n > 1. Let us substitute FY for Y in the last relation.
Using (1.10), we obtain

A(Y )AF (Z)�AF (Y )A(Z) =
1

2(n� 1)
[03R(FY;Z)�

0
K(FY;Z)];

Substituting the corresponding expressions given by the last two relations into (2.6),
after some calculation we obtain the equality

3R(X;Y )Z�
1

2(n� 1)
[03R(Y; Z)X �

0

3R(FY;Z)FX �
0

3R(X;Y )Z +03R(FX; Y )FZ]

=K(X;Y )Z�
1

2(n� 1)
[0K(Y; Z)X �0K(FY;Z)FX�0K(X;Y )Z +K0(FX; Y )FZ]:

Hence, we have proved the theorem in case a). In case b), the theorem is proved
similarly.

For K�ahler spaces the following theorem holds:

Theorem 2.2. If M2n(n > 1) is a K�ahler space with Riemann-Christo�el
connection 0r and 1-form A satisfying one of the following conditions:

a) (0rYA)(X) = 0; or b) (0rYA)(X) =0 K(FX; Y )

and if the third Ricci 000
3 R(X;Y ) is equal to zero, then the curvature tensor

3R(X;Y )Z is equal to the curvature tensor K(X;Y )Z.

Proof . Let us de�ne the linear map

g :X(M2n)! X(M2n)

by the following relation

g(X) =3 R(Y; Z)X �K(Y; Z)X�

� [AF (Z)AF (X)�A(Z)A(X)]Y � [A(Z)AF (X) +AF (Z)A(X)]F (Y )

= [AF (Z)AF (Y )�A(Y )A(Z)]X + [AF (Z)A(Y ) +A(Z)AF (Y )]F (X);

for any X;Y; Z 2 X(M2n). Since 0r is a Riemann-Christo�el connection, bearing
in mind the notation (2.4) and the de�nition of the third Ricci tensor given by the
formula (1.9), we get

000
K(Y; Z) = 0:

Using the notion of the third Ricci tensor given by the relation (1.9), and the
relations (1.10), (2.6), (2.7), we can compute the trace of the linear map g de�ned
above; it follows that

000

3 R(Y; Z) + 2(n� 1)[AF (Z)F (Y )�A(Z)A(Y )] = 0;

and due to n > 1, we get

A(Y )A(Z)�AF (Y )AF (Z) =
1

2(n� 1)

000

3 R(FY;Z):
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If we substitute FY for Y in the last relation, keeping in mind (1.10) we get

AF (Y )A(Z) +A(Y )AF (Z) =
1

2(n� 1)
000

3 R(FY;Z):

Using the last two relations, the expression (2.6) can be written in the following
form

3R(X;Y )Z = K(X;Y )Z +
1

2(n� 1)
[�0003 R(Y; Z)X +0003 R(FY;Z)FX+

+0003 R(X;Y )Z �0003 R(FY;X)FZ]:

The conclusion follows from this formula and from the assumption that the third
Ricci tensor 0003 R(X;Y ) vanishes.

Theorem 2.2 in case b) can be proved similarly.

Let us now consider the curvature tensor 4R(X;Y )Z given by the formula
(1.6). Similarly as in the case curvature tensor 3R(X;Y )Z we prove the following
two theorems.

Theorem 2.3. The tensor

4R(X;Y )Z �
1

2(n� 1)
[004R(X;Z)Y �004 R(FX;Z)FY �004 R(X;Y )Z+

+004 R(FX; Y )FZ]

is independent on 1-form A, which is covariantly constant with respect to the con-
nection 0r and it is equal to the tensor

K(X;Y )Z �
1

2(n� 1)
[00K(X;Z)Y �00 K(FX;Z)FY �00 K(X;Y )Z

+00 K(FX; Y )FZ]:

Proof . Substituting (2.1) and (2.2) into (1.6) and using (1.1), (1.11), after a
long calculation we �nd

4R(X;Y )Z = K(X;Y )Z + [AF (ÆrY Z)X � YAF (Z)]X + [A(ÆrY Z)�

� YA(Z)]F (X)� [AF (ÆrXY )�XAF (Y )]Z � [A(ÆrXY )�XA(Y )]F (Z)

+ [AF (X)AF (Z)�A(X)A(Z)]Y + [A(X)AF (Z) +AF (X)A(Z)]F (Y )

� [AF (X)AF (Y )�A(X)A(Y )]Z � [A(X)AF (Y ) +AF (X)A(Y )]F (Z);

and from here, using the relation (2.5) for covariantly constant 1-form A, we have

4R(X;Y )Z = K(X;Y )Z + [AF (X)AF (Z)�A(X)A(Z)Y+

+ [AF (X)A(Z) +A(X)AF (Z)]F (Y )� [AF (X)AF (Y )�(2.8)

+A(X)A(Y )]Z � [AF (X)A(Y ) +A(X)AF (Y )]F (Z):

If we de�ne the corresponding linear map

h :X(M2n)! X(M2n)
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by

h(Y ) =4 R(X;Y )Z �K(X;Y )Z + [AF (X)AF (Z)�A(X)A(Z)]Y�

� [AF (X)A(Z) +A(X)AF (Z)]F (Y )� [AF (X)AF (Y )�

�A(X)A(Y )]Z � [AF (X)A(Y ) +A(X)AF (Y )]F (Z);

and calculate its trace we get as in the previous case

00

4R(X;Z)�00 K(X;Z)� 2(n� 1)[AF (X)AF (Z)�A(X)A(Z)] = 0:

Since n > 1, from here we have

AF (X)AF (Z)�A(X)A(Z) =
1

2(n� 1)
[004R(X;Z)�00 K(X;Z)]:

Substituting FX for X in the last relation and using (1.10) we get

A(X)AF (Z)�AF (X)A(Z) =
1

2(n� 1)
[004R(FX;Z)�00 K(FX;Z)]:

Let us substitute the corresponding expression from the last two relations into (2.8).
Then it yields

4R(X;Y )Z �
1

2(n� 1)
[004R(X;Z)Y �004 R(FX;Z)FY �004 R(X;Y )Z+

+004 R(FX; Y )FZ] = K(X;Y )Z �
1

2(n� 1)
[00K(X;Y )Z�

�
00
K(FX;Z)FY �00 K(X;Y )Z +00 K(FX; Y )FZ];

as required.

Theorem 2.4. If 1-form A is covariantly constant with respect to the
Riemann-Christo�el connection 0r of K�ahlar spece M2n(n > 1) and the Ricci
tensor 00

4R(X;Y ) vanishes, then the curvature tensor 4R(X;Y )Z is equal to the
curvature tensor K(X;Y )Z.

Proof . This theorem can be proved analogously to Theorem 2.2 using the
linear map k :X(M2n)! X(M2n)

k(Z) =4 R(X;Y )Z �K(X;Y )Z�

� [AF (X)AF (Z)�A(X)A(Z)]Y � [AF (X)A(Z) +A(X)AF (Z)]F (Y )

+ [AF (X)AF (Y )�A(X)A(Y )]Z + [AF (X)A(Y ) +A(X)AF (Y )]F (Z);

for any X;Y 2 X(M2n).

We emphasize that, unlike Theorems 2.1 and 2.2, Theorems 2.3 and 2.4 are
not valid under the assumption

(0rYA)(X) =0 K(FX; Y ):
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3. Locally decomposable Riemannian space. Let us consider the same
problem for locally decomposable Riemannian space Mn; (n > 2; p > 1; q > 1), as
we did for complex analytic space. In this section we use the notation

(3.1) � = �
n� 2

(n� 2)2 � '2
; � =

'

(n� 2)2 � '2
:

This time, the results we obtain have various geometric interpretations.

The (1F;2 F )-connection on locally decomposable Riemannian spaceMn given
by (1.17) in the case

Ai
jk =

1

2
AjF

i
k ;

where Aj is a �eld of 1-forms, and F i
k tensor of almost product structure has the

form
�ijk =0 �ijk +AjF

i
k +AaF

a
j Æ

i
k:

Using the notion of connection in the sense of Koszul given by (1.1) we can write
this relation in the following way

(3.2) 1
rXY =0

rXY +A(X)F (Y ) +AF (X)Y:

In addition, we also de�ne the second connection

(3.3) 2
rXY =0

rXY +A(Y )F (X) +AF (Y )X:

Keeping in mind (1.1). (1.13), (1.14), (2.4), (3.2) and (3.3), the curvature tensor

3R(X;Y )Z given by the relation (1.5) after a long calculation, can be represented
in the following form

3R(X;Y )Z = K(X;Y )Z+

+ [A(0rY FZ)� YAF (Z) +AF (Y )AF (Z) +A(Y )A(Z)]X

+ [A(0rY Z)� YA(Z) +AF (Y )A(Z) +A(Y )AF (Z)]F (X)(3.4)

� [A(0rXFY )�XAF (Y ) +AF (Y )AF (X) +A(Y )A(X)]Z

� [A(0rXY )�XA(Y ) +A(Y )AF (X) +A(X)AF (Y )]F (Z):

Using this formula for the curvature tensor 3R(X;Y )Z, under di�erent as-
sumptions for 1-form A we prove the following theorems.

Theorem 3.1. Let Mn be a locally decomposable Riemannian space with a
�eld of 1-forms A which is either

a) covariantly constant with respect to the Riemann-Christo�el connection
0r, that is

(0rYA)(X) = 0

or

b) (0rYA)(X) = g(X;Y ).
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Then the tensor �eld

3R(X;Y )Z + �[03R(Y; Z)X +03 (FY;Z)FX �
0

3 R(X;Y )Z �03 R(FX; Y )FZ]

+ �(03R(FY;Z)X +03 R(Y; Z)FX �
0

3 R(FX; Y )Z �03 R(X;Y )FZ]

is independent on the �eld of 1-forms A and it is equal to the �eld of product
projective curvature tensors [1]. Here �; � are constants given by (3.1).

Proof . Let us prove the theorem in case a). Due to the assumption that
1-form A is covariantly constant with respect to the connection 0r, (2.5) is valid.
Keping in mind this fact the relation (3.4) can be written in the simpler form

3R(X;Y )Z =K(X;Y )Z+(3.5)

+[AF (Y )AF (Z) +A(Y )A(Z)]X + [AF (Y )A(Z) +A(Y )AF (Z)]FX

�[AF (Y )AF (X) +A(Y )A(X)]Z � [A(Y )AF (X) +A(X)AF (Y )]FZ:

Let us de�ne a linear map

f :X(Mn)! X(Mn)

by the following relation

f(X) =3 R(X;Y )Z �K(X;Y )Z�

� [AF (Y )AF (Z) +A(Y )A(Z)]X � [AF (Y )A(Z) +A(Y )AF (Z)]FX

+ [AF (Y )AF (X) = A(Y )A(X)]Z + [A(Y )AF (X) +A(X)AF (Y )]FZ:

If we determine the trace of this linear map, using (1.7), (1.13)(1.16), (3.5) we
obtain

0

3R(Y; Z) =
0
K(Y; Z)+

+ (n� 2)[A(Y )A(Z) +AF (Y )AF (Z)]+(3.6)

+ '[AF (Y )A(Z) +A(Y )AF (Z)]:

Substituting FY for Y in (3.6) we get

0

3R(FY;Z) =
0
K(FY;Z)+

+ (n� 2)[AF (Y )A(Z) +A(Y )AF (Z)]

+ '[A(Y )A(Z) +AF (Y )AF (Z)];

where we used (1.13). Let us multiply (3.6) by ' and (3.7) by (n�2). Subtracting
the relations so obtained we �nd

AF (Y )A(Z) +A(Y )F (Z) =

=
1

'2 � (n� 2)2
['03R(Y; Z)� (n� 2)03R(FY;Z)� '0K(Y; Z)+(3.8)

+ (n� 2)0K(FY;Z)]:
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Let us substitute FY for Y in the relation (3.8). By (1.13) we have

AF (Y )AF (Z) +A(Y )A(Z) =

=
1

'2 � (n� 2)2
['03R(FY;Z)� (n� 2)03R(Y; Z)� '0K(FY;Z)+

+ (n� 2)0K(Y; Z)]:

Using (3.8), (3.9) and the notation in (3.1), the relation (3.5) can be transformed,
so that we get

3R(X;Y )Z + �[03R(Y; Z)Z +03 R(FY;Z)FX �
0

3 R(X;Y )Z �03 R(FX; Y )FZ]+

+ �[03R(FY;Z)X +03 R(Y; Z)FX �
0

3 R(FX; Y )Z �03 R(X;Y )FZ] =

= K(X;Y )Z + �[0K(Y; Z)X +0 K(FY;Z)FX;�0K(X;Y )Z�

�
0
K(FX; Y )FZ + �[0K(FY;Z)X +0 K(Y; Z)FX �0 K(FX; Y )Z�

�
0
K(X;Y )FZ;

and taking account of [11] the theorem is proved in case a).

The theorem can be proved similarly i case b).

From the preceding theorem we immediately obtain the following.

Corollary 3.1. Let Mn be a locally decomposable Riemannian space, with
a �eld of 1-forms A which is either:

a) covariantly constant with respect to the Riemann-Christo�el connection,
or

b) (0rYA)(X) = g(X;Y ).

Then we have

3R(X;Y )Z = �[03R(X;Y )Z +03 R(FX; Y )FZ �03 R(Y; Z)X �
0

3 R(FY;Z)FX ]

+ �[03R(FX; Y )Z +03 R(X;Y )FZ �03 R(FY;Z)X �
0

3 R(Y; Z)FX ]

if and only if Mn is a space of separately constant curvature.

Theorem 3.2. Let Mn be a locally decomposamble Riemannian space, with
a �led of 1-forms A which is either:

a) covariantly constant with respect to the Riemann-Christo�el connection
Ær, or

b) (0rXA)(X) = g(X;Y )

and with curvature tensor 3R(X;Y )Z which is equal to zero. Then the space Mn

is at.

Proof . Let us prove the theorem in case a). It follows directly from theorem
3.1, that a space Mn is of s separately constant curvature if 3R(X;Y )Z = 0, for
any X;Y; Z 2 XMn). We want to prove that the space is not only of separately
constant curvature but also at. For that reason we de�ne the linear map.

g :X(Mn)! X(Mn)
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by the following relation;

f(Z) =3 R(X;Y )Z �K(X;Y )Z�

�[AF (Y )AF (Z) +A(Y )A(Z)]X � [AF (Y )A(Z) +A(Y )AF (Z)]F (X)

+[AF (Y )AF (X) +A(Y )(A(X)]Z + [A(Y )AF (X) +A(X)AF (Y )]F (Z):

Since 0r is a Riemann-Christo�el connection, taking into account (1.9) and (2.4),
we obtain

000
K(X;Y ) = 0;

and determining the trace of the previously de�ned linear map, we prove as in
previous cases that the following equality

3R(X;Y )Z + �[0003 R(Z; Y )X +0003 R(FZ; Y )FX �
000

3 R(X;Y )Z �0003 R(FX; Y )FZ]+

+�[0003 R(FZ; Y )X +0003 R(Z; Y )FX �
000

3 R(FX; Y )Z �0003 R(X;Y )FZ] = K(X;Y )Z

is valid in both cases a) and b), and from that the conclusion of the theorem follows
directly.

Let us now consider the curvature tensor 4R(X;Y )Z given by the formula
(1.6). Similarly as in the previous case we prove that two following theorems are
valid:

Theorem 3.3. Let Mn be a locally decomposable Riemannian space, with a
�eld of 1-forms A, which is covariantly constant with respect to Rieman-Christo�el
connection 0r. Then the tensor �eld

4R(X;Y )Z + �[004R(X;Z)Y +004 R(FX;Z)FY �004 R(X;Y )Z�

�
00

4 R(FX; Y )FZ] + �[004R(FX;Z)Y +004 R(X;Z)FY �004 (FX; Y )Z

�
00

4 R(X;Y )FZ]

where �; � are constants given by (3.1), is independent on the �eld of 1-forms A
and has opposite value of tensor �eld of product-projective curvature P (Y;X)Z.

Proof . Substituting expressions (3.2) and (3.3) for corresponding connection
in the formula (1.6) for curvature tensor 4R(X;Y )Z, and using the notations (2.4),
(3.1) and the relations (1.1), (1.13) we get

4R(X;Y )Z = K(X;Y )Z+

+ [A(ÆrY Z)� YA(Z)]F (X) + [AF (ÆrY Z)� YAF (Z)]X

� [A(ÆrXY )�XA(Y )]F (Z)� [AF (ÆrXY )�XAF (Y )]Z

+ [A(X)A(Z) +AF (X)AF (Z)]Y + [A(X)AF (Z) +AF (X)A(Z)]F (Y )

� [A(X)A(Y ) +AF (X)AF (Y )]Z � [A(X)AF (Y ) +AF (X)A(Y )]F (Z):

Since a �eld of 1-forms A is covariantly constant, is satis�es the formula (1.2), and
therefore the foregoing relation can be written in a simpler form;

4R(X;Y )Z = K(X;Y )Z+
(3.10)

+ [A(X)A(Z) +AF (X)AF (Z)]Y + [A(X)AF (Z) +AF (X)A(Z)]F (Y )

� [A(X)A(Y ) +AF (X)AF (Y )]Z � [A(X)AF (Y ) +AF (X)A(Y )]F (Z):
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If we de�ne a linear map f :X(M)! X(M) by

f(Y ) =4 R(X;Y )Z �K(X;Y )Z�

� [A(X)A(Z) +AF (X)AF (Z)]Y � [A(X)AF (Z) +AF (X)A(Z)]F (Y )

+ [A(X)A(Y ) +AF (X)AF (Y )]Z + [A(X)AF (Y ) +AF (X)A(Y )]F (Z);

for any X;Y; Z 2 X(M) and then �nd the trace of this linear map, bearing in mind
(1.8), (1.13), (1.16) and (3.10), we obtain

00

4R(X;Z) =00 K(X;Z)+

+ (n� 2)[A(X)A(Z) +AF (X)AF (Z)]+

+ '[A(X)AF (Z) +AF (X)A(Z)];

and from that, if we substitute FX for X , we have

00

4R(FX;Z) =00 K(FX;Z) + (n� 2)[AF (X)A(Z) +A(X)AF (Z)]

+ '[AF (X)AF (Z) +A(X)A(Z)]:

Solving the system of linear equations given by the two last relations we �nd

AF (X)A(Z) +A(X)AF (Z) = �[00K(FX;Z)�004 R(FX;Z)]+

+ �[00K(X;Z)�004 R(X;Z)]

�A(X)A(Z) +AF (X)AF (Z) = �[00K(X;Z)�004 R(X;Z)]+

+ �[00K(FX;Z)�004 R(FX;Z)]:

If we substitute the corresponding expressions from the last two relations into (3.10)
we have

4R(X;Y )Z + �[004R(X;Z)Y +004 R(FX;Z)F (Y )�004 R(X;Y )Z �004 R(FX; Y )F (Z)]

+ �[004R(FX;Z)Y +004 R(X;Z)F (Y )�004 R(FX; Y )Z �004 R(X;Y )F (Z)] =

= K(X;Y )Z + �[00K(X;Z) +00 K(FX;Z)F (Y )�00 K(X;Y )Z �00 K(FX; Y )F (Z)]

+ �[00K(FX;Z)Y +00 K(X;Z)F (Y )�00 K(FX; Y )Z �00 K(X;Y )F (Z)]:

Since K(X;Y )Z = �K(Y;X)Z we have 00K(X;Y ) = �0K(X;Y ) and hence
(3.11) can be written in the following way

4R(X;Y )Z + �[004R(X;Z)Y +004 R(FX;Z)F (Y )�004 R(X;Y )Z �004 R(FX; Y )F (Z)

+ �[004R(FX;Z)Y +004 R(X;Z)F (Y )�004 R(FX; Y )Z �004 R(X;Y )F (Z)]

= �K(Y;X)Z � �[0K(X;Z)Y +0 K(FX;Z)F (Y )�0 K(X;Y )Z

�
0
K(FX; Y )F (Z)� �[0K(FX;Z)Y +0 K(X;Z)F (Y )�0 K(FX; Y )Z

�
0
K(X;Y )F (Z)]:

This concludes the proof of theorem 3.3.

From the previous theorem we immediately obtain the following.
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Corollary 3.2. Let Mn be a locally decomposable Riemannian space, with
a �eld of 1-forms A, which is covariantly constant with respect to the Riemann-
Chrito�el connection Ær. Then we have

4R(X;Y )Z = �[004R(X;Y )Z +004 R(FX; Y )F (Z)�004 R(X;Z)Y �004 R(FX;Z)F (Y )]

+ �[004R(FX; Y )Z +004 R(X;Y )F (Z)�004 R(FX;Z)Y �004 R(X;Z)F (Y )]

if and only if a space Mn is of separately constant curvature.

Theorem 3.4. Let Mn be a locally decomposable Riemannian space, with
a �eld of 1-forms A, which is covariantly constant with respect to the Riemann-
Christo�el connection 0r and with a �eld of curvature tensors 4R(X;Y )Z which
is equal to zero. Then the space Mn is at.

Proof . From Theorem 3.3 it follows directly that if 4R(X;Y )Z = 0, then a
spaceMn is a space of separately constant curvature. To prove that a space is also
a at space, we de�ne a linear map h :X(Mn)! X(Mn) by the following relation

h(Z) =4 R(X;Y )Z �K(X;Y )Z�

� [A(X)A(Z) +AF (X)AF (Z)]Y � [A(X)AF (Z) +AF (X)A(Z)]F (Y )

+ [A(X)A(Y ) +AF (X)AF (Y )]Z + [A(X)AF (Y ) +AF (X)A(Y )]F (Z)

Since 0r is a Riemann-Christo�el connection, we have

000
K(X;Y ) = 0

and therefore, determining the trace of the previously de�ned linear map, we can
prove as before that

4R(X;Y )Z + �[0004 R(X;Y )Z +0004 R(FX; Y )F (Z)�0004 R(X;Z)Y�
000

4 R(FX;Z)FY )] + �[0004 R(FX; Y )Z +0004 R(X;Y )F (Z)�0004 R(FX;Z)Y�

�
000

4 R(X;Z)F (Y )] = K(X;Y )Z

and from here the conclusion of Theorem 3.4 follows directly.

Note that for locally decomposable Riemannian spaces and for complex ana-
lytic spaces the theorems related to the curvature tensor 4R(X;Y )Z are valid only
under the assumptions that the �eld of 1-forms A is covariantly constant. Besides
that assumptions for a �eld of 1-forms A, which are related to the curvature tensor

3R(X;Y )Z, are di�erent for locally decomposable Riemannian space and complex
analytic space.
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