ON EXTRAPOLATION OF MOVING AVERAGE AND AUTOREGRESSIVE PROCESSES

Pavle Mladenović

1. Introduction

Let $X(s) = (X_1(s), \ldots, X_n(s))$, $s \in R$, be a multidimensional wide sense stationary random process with the mean value zero, spectral density matrix $||f_{jk}^x(\lambda)||$ and spectral process $Z^x(\lambda) = (Z_1^x(\lambda), \ldots, Z_n^x(\lambda))$, $\lambda \in R$. Suppose we know the values of the process X(s) on the finite interval [t-T,t]. The problem of linear extrapolation of stationary random process X(s) at the point $t+\tau$, $\tau>0$, can be formulated as follows: Find the random variable

$$\tilde{X}_1(t,\tau,T) = \sum_{k=1}^n \int_{-\infty}^{+\infty} e^{it\lambda} \Phi_k(\lambda) dZ_k^X(\lambda)$$
(1.1)

which is the linear least-squares estimator of $X_1(t+\tau)$ given $X_k(s)$, $t-T \leq s \leq t$, $k=1,2,\ldots,n$. The function $(\Phi_1(\lambda),\ldots,\Phi_n(\lambda))$ will be called the spectral characteristic for extrapolation of the process X(s) at the point $t+\tau$. Let H(X) denote the Hilbert space generated by $\{X_k(s), -\infty < s < +\infty, k=1,2,\ldots,n\}$, and H(X,t,T)-the smallest Hilbert space spanned by $\{X_k(s), t-T \leq s \leq t, k=1,2,\ldots,n\}$. Then, $\tilde{X}_1(t,\tau,T)$ is the projection of $X_1(t+\tau)$ into H(X,t,T).

For the class of stationary random processes $X(s) = (X_1(s), \ldots, X_n(s))$ having the nonsingular spectral density matrix $||f_{jk}(\lambda)||$, where all $f_{jk}(\lambda)$ are rational functions of λ , this extrapolation problem was studied in [6].

Now, let $X(s) = (X_1(s), \dots, X_n(s))$ and $Y(s) = (Y_1(s), \dots, Y_n(s))$ be two multidimensional stationary random processes satisfying the following equation

$$Y(s) = \sum_{\nu=0}^{N} a_{\nu} X(s - \nu \theta), \ a_{0} = 1, \ a_{\nu} \in R, \ \theta > 0$$
(1.2)

and let the roots of the equation

$$\lambda^{N} + a_{1}\lambda^{N-1} + \dots + a_{N-1}\lambda + a_{N} = 0 \tag{1.3}$$

be smaller than one in absolute value. Then,

$$X_k(s) = \sum_{\nu=0}^{\infty} c_{\nu} Y_k(s - \nu \theta), \ k = 1, 2, \dots, n,$$
 (1.4)

when the series on the right side of (1.4) converges in quadratic mean and the coefficients c_{ν} satisfy the homogeneous difference equations

$$a_0c_k + a_1c_{k-1} + \dots + a_Nc_{k-N} = 0, \ k \ge N$$
 (1.5)

and the initial conditions

$$c_0 = 1, \ a_0 c_k + a_1 c_{k-1} + \dots + a_k c_0 = 0, \ 0 < k < N.$$
 (1.6)

If $||f_{jk}^X(\lambda)||$ and $||f_{jk}^Y(\lambda)||$ are the spectral matrices of the processes X(s) and Y(s), then we have

$$f_{jk}^{Y}(\lambda) = \left| \sum_{\nu=0}^{N} a_{\nu} e^{-i\nu\theta\lambda} \right|^{2} f_{jk}^{X}(\lambda). \tag{1.7}$$

In this paper we shall find:

I) the linear least-squares estimator $\tilde{Y}_1(t,\tau,T)$ of $Y_1(t+\tau)$ given the values $Y_k(s), t-T \leq s \leq t, k=1,2,\ldots,n$, if X(s) is a nonsingular process with a rational spectrum,

II) the linear least-squares estimator $\tilde{X}_1(t,\tau,T)$ of $X_1(t+\tau)$ given the values $X_k(s), \ t-T \leq s \leq t, \ k=1,2,\ldots,n$, if Y(s) is a nonsingular stationary random process with a rational spectrum.

For the single processes $Y(s) = Y_1(s)$ and $X(s) = X_1(s)$ this problem was studied in [3].

The following lemma will be used:

LEMMA 1. (Yaglom, A. M., [6 275–277]): A function $(\Phi_1(\lambda), \ldots, \Phi_n(\lambda))$ is the spectral characteristic for extrapolation of a stationary random process X(s) at the point $t + \tau$, $\tau > 0$, given $X_k(s)$, $t - T \le s \le t$, $k = 1, \ldots, n$, if and only if:

$$1^{\circ} \int_{-\infty}^{+\infty} |\Phi_k(\lambda)|^2 f_{kk}^X(\lambda) d\lambda < \infty, \quad k = 1, 2, \dots, n$$

$$(1.8)$$

 2° . The functions

$$\psi_k(\lambda) = \left(e^{i\tau\lambda} - \Phi_1(\lambda)\right) f_{1k}(\lambda) - \sum_{j=2}^n \Phi_j(\lambda) f_{jk}(\lambda), \ k = 1, 2, \dots, n$$
(1.9)

can be represented in the form

$$\psi_k(\lambda) = \psi_k^{(1)}(\lambda) + e^{-i\lambda\tau} \psi_k^{(2)}(\lambda) \tag{1.10}$$

where: a_1) the function $\psi^1_{(k)}(\lambda)$ is analytic in the upper half-plane and

 $a_2)$ as $\mid \lambda \mid \rightarrow \infty$ in the upper half-plane, $\psi^1_{(k)}(\lambda)$ falls off faster than

 b_1) the function $\psi_k^{(2)}(\lambda)$ is analytic in the lower half-plane and

 b_2) as $\mid \lambda \mid \to \infty$ in the lower galf-plane, $\psi_k^{(2)}(\lambda)$ falls off faster than $\mid \lambda \mid^{-1-\varepsilon}, \ \varepsilon > 0$.

 3° the functions $\Phi_k(\lambda),\ k=1,2,\ldots,n,$ are analytic functions represented $in\ the\ form$

$$\Phi_k(\lambda) = \sum_{\nu} e^{i\tau_{\nu}\lambda} R_{k,\nu}(\lambda) \tag{1.11}$$

where $R_{k,\nu}(\lambda)$ are rational functions and $\tau_{\nu} \in [-T,0]$.

For a stationary random process with the nonsingular spectral density matrix $||f_{ik}(\lambda)||$, where all $f_{ik}(\lambda)$ are rational functions of λ , we shall use the following notation

$$D(\lambda) = \det ||f_{jk}(\lambda)|| = \det \left\| \frac{Q_{jk}(\lambda)}{P_{jk}(\lambda)} \right\| = \frac{Q(\lambda)}{P(\lambda)},$$

$$P(\lambda) = (\lambda - \theta_1) \cdots (\lambda - \theta_L)(\lambda - \overline{\theta}_1) \cdots (\lambda - \overline{\theta}_L)$$

and we shall denote the degrees of polynomials $P_{jj}(\lambda)$, $Q_{jj}(\lambda)$, $P(\lambda)$, $Q(\lambda)$, by $2N_{jj}$, $2(N_{jj}-m_j)$, 2K, 2L, respectively.

2. Exstrapolation of moving average processes

Theorem 2.1. Let $X(s) = (X_1(s), \dots, X_n(s))$ be a nonsingular stationary random process with a rational spectrum, and let Y(s) be given by (1.2) where the roots of the equations (1.3) are less than one in absolute value. Suppose we know the values $Y_k(s)$, t-T < s < t, $k = 1, 2, \ldots, n$, and suppose T/θ is not an integer. Denote $[T/\theta] = l$ and $[\tau/\theta] = S$.

If $S \geq N$, then the spectral characteristic $(\Phi_1^Y(\lambda), \ldots, \Phi_n^Y(\lambda))$ for extrapolation of a stationary random process Y(s) at the point $t + \tau$ has the following

$$\Phi_k^Y(\lambda) = R_k^{(1)}(\lambda) \sum_{j=0}^l c_{kj}^1 e^{-i\lambda j\theta} + e^{-i\lambda T} R_k^{(2)}(\lambda) \sum_{j=0}^l c_{kj}^{(2)} e^{i\lambda j\theta}, \ k = 1, 2, \dots, n \quad (2.1)$$

where

$$R_k^{(i)}(\lambda) = \frac{\omega_k^{(i)}(\lambda)}{(\lambda - \theta_1) \cdots (\lambda - \theta_L)(\lambda - \overline{\theta_1}) - \cdots (\lambda - \overline{\theta_L})}$$
(2.2)

and $\omega_k^{(i)}(\lambda)$, i=1,2 are the polynomials of the degree $2L+m_k-1$.

Proof. The functions $\Phi_k(\lambda)$, $k=1,2,\ldots,n$, given by (2.1) and (2.2) have the form (1.11) and satisfy the condition 1°. of Lemma 1. We shall define the coefficients $c_{kj}^{(1)}, c_{kj}^{(2)}$ and the coefficients of the polynomials $\omega_k^{(i)}(\lambda)$ so that these functions satisfy the conditions 2° and 3° .

Using (1.7), we have

$$\psi_m^Y(\lambda) = (e^{i\tau\lambda} - \Phi_1^Y(\lambda))f_{1m}^Y(\lambda) + \sum_{k=2}^n \Phi_k^Y(\lambda)f_{km}^Y(\lambda) =$$

$$= \left\{ (e^{i\theta\lambda} - \Phi_1^Y(\lambda))f_{1m}^X(\lambda) + \sum_{k=2}^n \Phi_k^Y(\lambda)f_{km}^X(\lambda) \right\} \left| \sum_{j=0}^N a_j e^{-i\lambda j\theta} \right|^2. \tag{2.3}$$

Using the following equations

$$\left| \sum_{j=0}^{N} a_j e^{-i\lambda j\theta} \right|^2 = \sum_{j=-N}^{N} b_j e^{i\lambda j\theta}, \ \lambda \in R$$
 (2.4)

$$\sum_{j=0}^{l} c_{kj}^{(1)} e^{-i\lambda j\theta} \sum_{j=-N}^{N} b_j e^{i\lambda j\theta} = \sum_{j=-N-l}^{N} \alpha_{kj} e^{i\lambda j\theta}$$

$$(2.5)$$

$$\sum_{j=0}^{l} c_{kj}^{(2)} e^{i\lambda j\theta} \sum_{j=-N}^{N} b_j e^{i\lambda j\theta} = \sum_{j=-N}^{N+l} \beta_{kj} e^{i\lambda j\theta}$$
(2.6)

the functions $\psi_m^Y(\lambda), \ m=1,2,\ldots,n$ can be represented in the form

$$\psi_m^Y(\lambda) = \sum_{j=-N}^N b_j e^{i\lambda(\tau+j\theta)} f_{1m}^X(\lambda) - \sum_{k=1}^n \psi_{k,1}(\lambda) f_{k,m}^X(\lambda) - e^{-i\lambda T} \sum_{k=1}^n \psi_{k,2}(\lambda) f_{km}^X(\lambda) - \sum_{k=1}^n \chi_k(\lambda) f_{km}^X(\lambda)$$

$$(2.7)$$

where

$$\psi_{k,1}(\lambda) = R_k^{(1)}(\lambda) \sum_{j=0}^{N} \alpha_{kj} e^{i\lambda j\theta} + R_k^{(2)}(\lambda) \sum_{j=l+1}^{l+N} \beta_{kj} e^{i\lambda(-T+j\theta)}$$
 (2.8)

$$\psi_{k,2}(\lambda) = R_k^{(1)}(\lambda) \sum_{j=-N-l}^{-l-1} \alpha_{kj} e^{i\lambda(T+j\theta)} + R_k^{(2)}(\lambda) \sum_{j=-N}^{0} \beta_{kj} e^{i\lambda j\theta}$$
 (2.9)

$$\chi_k(\lambda) = R_k^{(1)}(\lambda) \sum_{j=-l}^{-1} \alpha_{kj} e^{i\lambda j\theta} + e^{-i\lambda T} R_k^{(2)}(\lambda) \sum_{j=l}^{l} \beta_{kj} e^{i\lambda j\theta}$$
 (2.10)

The condition $S \geq N$ implies the following inequalities

$$\tau + j\theta \ge 0, \ j = -N, \ -N + 1, \dots, N.$$

If we define

$$\psi_m^{(1)}(\lambda) = \sum_{j=-N}^N b_j e^{i\lambda(\tau+j\theta)} f_{1m}^X(\lambda) - \sum_{k=1}^n \psi_{k,1}(\lambda) f_{km}^X(\lambda)$$
 (2.11)

$$\psi_m^{(2)}(\lambda) = -\sum_{k=1}^n \psi_{k,2}(\lambda) f_{km}^X(\lambda)$$
 (2.12)

and if we put

$$\chi_k(\lambda) = 0, \quad k = 1, 2, \dots, n$$
 (2.13)

then, the functions $\psi_m^Y(\lambda)$ will have the form (1.10), and the conditions a_2) and b_2) of Lemma 1. will be satisfied.

The equations (2.13) imply the following equations

$$\alpha_{k,j} = 0, \quad j = -l, \ -l+1, \dots, -1, \quad k = 1, 2, \dots, n$$
 (2.14)

$$\beta_{kj} = 0, \quad j = 1, 2, \dots, l, \quad k = 1, 2, \dots, n$$
 (2.15)

If we put $c_{k0}^{(1)}=c_{k0}^{(2)}=1,\ k=1,2,\ldots,n,$ then, from (2.14) and (2.15) we can determine

$$c_{1j}^{(1)} = c_{2j}^{(1)} = \dots = c_{nj}^{(1)} (= c_j^{(1)}), \ j = 1, 2, \dots, l,$$
 (2.16)

$$c_{1j}^{(2)} = c_{2j}^{(2)} = \dots = c_{nj}^{(2)} (= c_j^{(2)}), \ j = 1, 2, \dots, l,$$
 (2.17)

The coefficients of the polynomials $\omega_k^{(i)}(\lambda)$, $i=1,2,\ k=1,\ldots,n$ (there are $4nL+2(m_1+m_2+\cdots+m_n)$ of such coefficients) can be found as in [6] so that the conditions a_1,a_2 and 3° are satisfied.

Remark 1: If we consider the following equations

$$Y_j(s) = \sum_{\nu=0}^{N} a_{\nu}^{(j)} X(s - \nu \theta), \ a_0^{(j)} = 1, \ j = 1, 2, \dots, n$$

instead of (1.2) and if the roots of the equations

$$\lambda^{N} + a_{1}^{(j)} \lambda^{N-1} + \dots + a_{N-1}^{(j)} \lambda + a_{N}^{(j)} = 0, \ j = 1, 2, \dots, n$$

are less than one in absolute value, then the spectral characteristic has the form (2.1). In this case the coefficients $c_{kj}^{(1)}, c_{kj}^{(2)}, k = 1, 2, \ldots, n; j = 1, 2, \ldots, l$ may be obtained from the equations (2.14) and (2.15) but the equalities (2.16) and (2.17) do not hold.

Theorem 2.2. Let the assumptions be as in Theorem 2.1. If S < N, the spectral characteristic $(\Phi_1^Y(\lambda), \ldots, \Phi_n^Y(\lambda))$ has the form:

$$\Phi_1^Y(\lambda) = R_1^{(1)}(\lambda) \sum_{j=0}^l c_{1j}^{(1)} e^{-i\lambda j\theta} + e^{-i\lambda T} R_1^{(2)}(\lambda) \sum_{j=0}^l c_{1j}^{(2)} e^{i\lambda j\theta} + \sum_{\nu \in A} c_{\nu}^{(3)} e^{i\lambda(\tau + \nu\theta)} \tag{2.18}$$

$$\Phi_k^Y(\lambda) = R_k^{(1)}(\lambda) \sum_{j=0}^l c_{kj}^{(1)} e^{-i\lambda j\theta} + e^{-i\lambda T} R_k^{(2)}(\lambda) \sum_{j=0}^l c_{kj}^{(2)} e^{i\lambda j\theta}, \ k = 2, \dots, n$$
(2.19)

where $A = \{ \nu \mid -T < \tau + \nu \theta < 0 \}$ and the functions $R_k^{(i)}(\lambda)$ are as in Theorem 2.1.

Proof. In this case we have

$$\psi_{m}^{Y}(\lambda) = \sum_{j=-N}^{N} b^{j} e^{i\lambda(\tau+j\theta)} f_{1m}^{X}(\lambda) - \sum_{\nu \in A} c_{\nu}^{(3)} e^{i\lambda(\tau+\nu\theta)} \sum_{j=-N}^{N} b^{j} e^{i\lambda j\theta} f_{1m}^{X}(\lambda) - \sum_{k=1}^{n} \psi_{k,1}(\lambda) f_{km}^{X}(\lambda) - e^{-i\lambda T} \sum_{k=2}^{n} \psi_{k,2}(\lambda) f_{km}^{X}(\lambda) - \sum_{k=1}^{n} \chi_{k}(\lambda) f_{km}^{X}(\lambda)$$
 (2.20)

where $\psi_{k,1}(\lambda)$, $\psi_{k,2}(\lambda)$, $\chi_k(\lambda)$, where given by (2.8)—(2.10). We determine the coefficients $c_{\nu}^{(3)}$, $\nu \in A$, from the condition that the functions $e^{i\lambda(\tau+j\theta)}$, $-T < \tau + j\theta < 0$, are not included in the sum

$$\sum_{j=-N}^N b_j e^{i\lambda(\tau+j\theta)} f^X_{1m}(\lambda) - \sum_{\nu \in A} c^{(3)}_\nu e^{i\lambda(\tau+\nu\theta)} \sum_{j=-N}^N b_j e^{i\lambda j\theta} f^X_{1m}(\lambda).$$

Then, let us represent this sum as $\sum_1 + \sum_2$ where the functions $e^{i\lambda(\tau+j\theta)}, \ \tau+j\theta \geq 0$, are included in \sum_1 and the functions $e^{i\lambda(\tau+j\theta)}, \ \tau+j\theta \leq -T$, are included in \sum_2 . If we define

$$\psi_m^{(1)}(\lambda) = \sum_{k=1}^{n} -\sum_{k=1}^{n} \psi_{k,1}(\lambda) f_{km}^X(\lambda)$$
 (2.21)

$$\psi_m^{(2)}(\lambda) = e^{i\lambda T} \sum_{k=1}^{\infty} -\sum_{k=1}^{n} \psi_{k,2}(\lambda) f_{km}^X(\lambda)$$
 (2.22)

and if we put again $\chi_k(\lambda) = 0$, k = 1, 2, ..., n, the functions $\psi_m(\lambda)$ will have the form (1.10), and the proof is completed as in the previous case.

Remark. The function $\Phi_1^Y(\lambda)$ given by (2.1), is also given by (2.18), where $A = \{\nu \mid -T < \tau + \nu\theta < 0\} = \varnothing$.

Corollary. If $T = l\theta$, we have

$$\Phi_1^Y(\lambda) = R_1(\lambda) \sum_{j=0}^l c_{1j} e^{-i\lambda j\theta} + \sum_{\nu \in A} k_{\nu} e^{i\lambda(\tau + \nu\theta)}$$
(2.23)

$$\Phi_k^Y(\lambda) = R_k(\lambda) \sum_{j=0}^l c_{kj} e^{-i\lambda j\theta} k = 2, \dots, n.$$
(2.24)

This form of the function $(\Phi_1^Y(\lambda), \ldots, \Phi_n^Y(\lambda))$ is obtained if $T \to l\theta$ in (2.18) and (2.19).

THEOREM 2.3. Let the assumptions be as in Theorem 2.1. Then:

a) If T/θ is not an integer, we have

$$\tilde{Y}_{1}(t,\tau,T) = \sum_{k=1}^{n} \left\{ \sum_{j=0}^{m_{k}-1} \sum_{j=0}^{l} \left[A_{kj}^{(\nu)} Y_{k}^{(\nu)}(t-j\theta) + B_{kj}^{(\nu)} Y_{k}^{(\nu)}(t-T+j\theta) \right] + \int_{0}^{T} w_{k}(s) Y_{k}(t-s) \, ds \right\} + \sum_{\nu \in A} c_{\nu}^{(3)} Y_{1}(t+\tau+\nu\theta) \quad (2.25)$$

b) If $T = l\theta$, $\tilde{Y}_1(t, \tau, T)$ will have the form

$$\tilde{Y}_{1}(t,\tau,T) = \sum_{k=1}^{n} \left\{ \sum_{\nu=0}^{m_{k}-1} \sum_{j=0}^{l} c_{kj}^{(\nu)} Y_{k}^{(\nu)}(t-j\theta) + \int_{0}^{T} w_{k}(s) Y_{k}(t-s) ds \right\} + \sum_{\nu \in A} k_{\nu} Y_{1}(t+\tau+\nu\theta)$$
(2.26)

Proof. a) After separating the polynomials from the rational functions $R_k^{(i)}(\lambda)$, $i=1,2,\ k=1,2,\ldots,n$, the functions $\Phi_k^Y(\lambda)$, $k=1,\ldots,n$, can be represented in the form

$$\Phi_1^Y(\lambda) = \sum_{\nu=0}^{m_k-1} \sum_{j=0}^{l} \{A_{1j}^{(\nu)} e^{i\lambda(-j\theta)} + B_{1j}^{(\nu)} e^{i\lambda(-T+j\theta)}\} (i\lambda)^{\nu} + \varphi_1(\lambda) + \sum_{\nu \in A} c_{\nu}^{(3)} e^{i\lambda(\tau+\nu\theta)}$$
(2.27)

$$\Phi_k^Y(\lambda) = \sum_{\nu=0}^{m_k-1} \sum_{j=0}^{l} \{ A_{kj}^{(\nu)} e^{i\lambda(-j\theta)} + B_{kj}^{(\nu)} e^{i\lambda(-T+j\theta)} \} (i\lambda)^{\nu} + \varphi_k(\lambda), \quad k = 2, \dots, n.$$
(2.28)

Then, $\int_{-\infty}^{+\infty} |\varphi_k(\lambda)|^2 d\lambda < \infty$, k = 1, ..., n, and as $|\lambda| \to \infty$ in the lower

halfplane, the functions $\varphi_k(\lambda)$ fall off not slower than $|\lambda|^{-1}$, and as $|\lambda| \to \infty$ in the upper half-plane, they behave as $|\lambda|^{-k} e^{TIm\lambda}$, $k \ge 1$. We can easily see that the Fourier transform $W_k(s)$ of $\varphi_k(\lambda)$ is equal to zero if $s \in (-\infty, -T] \cup [0, +\infty)$ and consequently we have

$$\varphi_k(\lambda) = \int_0^T e^{-i\lambda s} w_k(s) \, ds, \, k = 1, 2, \dots, n$$
(2.29)

where $W_k(-s) = 2\pi \cdot w(s)$. The formula (2.25) can be obtained from the equations (1.1), (2.27), (2.28) and (2.29).

3. Extrapolation of autoregressive processes

THEOREM 3.1. Let $Y(s) = (Y_1(s), \ldots, Y_n(s))$ be a nonsingular stationary random process with a rational spectrum, and X(s) the process given by (1.2), where

the roots of the equation (1.3) are less than one in absolute value. Suppose we know the values $X_k(s)t - T \le s \le t$, k = 1, 2, ..., n, and T/θ is not an integer. Denote $[T/\theta] = l$, $[\tau/\theta] = S$. Then, the spectral characteristic $(\Phi_1^X(\lambda), ..., \Phi_n^X(\lambda))$ for extrapolation of the stationary random process X(s) at the point $t + \tau$, $\tau > 0$ has the following form:

a) If $0 \le l < N$, then

$$\Phi_1^X(\lambda) = R_1^{(1)}(\lambda) \sum_{j=0}^l c_j^{(1)} e^{-i\lambda j\theta} + e^{-i\lambda T} R_1^{(2)}(\lambda) \sum_{j=0}^l c_j^{(2)} e^{i\lambda j\theta} + \sum_{\nu \in A} c_\nu^{(3)} e^{i\lambda(\tau - \nu\theta)}$$
(3.1)

$$\Phi_k^X(\lambda) = R_k^{(1)}(\lambda) \sum_{j=0}^l c_j^{(1)} e^{-i\lambda j\theta} + e^{-i\lambda T} R_1^{(2)}(\lambda) \sum_{j=0}^l c_j^{(2)} e^{i\lambda j\theta}, k = 2, \dots, n.$$
(3.2)

b) If l > N, then

$$\Phi_1^X(\lambda) = R_1^{(1)}(\lambda) \sum_{\nu=0}^N a_{\nu} e^{-i\lambda\nu\theta} + e^{-i\lambda T} R_1^{(2)}(\lambda) \sum_{\nu=0}^N a_{\nu} e^{i\lambda\nu\theta} + \sum_{\nu \in B} c_{\nu}^{(3)} e^{i\lambda(\tau-\nu\theta)}$$
(3.3)

$$\Phi_k^X(\lambda) = R_k^{(1)}(\lambda) \sum_{\nu=0}^N a_{\nu} e^{-i\lambda\nu\theta} + e^{-i\lambda T} R_k^{(2)}(\lambda) \sum_{\nu=0}^N a_{\nu} e^{i\lambda\nu\theta}, k = 2, \dots, n.$$
(3.4)

The functions $R_k^{(i)}(\lambda)$ are rational functions as in Theorem 2.1 and

$$A = \{ \nu \mid -T < \tau - \nu \theta < 0 \}, \ B\{ \nu \mid -T < \tau - \nu \theta, \ \nu \le N \}.$$

Theorem 3.1 can be proved in the same way as Theorems 2.1 and 2.2 and then we have the following result:

Theorem 3.2. Under the assumptions of the Theorem 3.1. we have:

a) If $0 \le l < N$, then the linear least-squares estimator $\tilde{X}_1(t,\tau,T)$ of $X_1(t+\tau)$ has the following form

$$\tilde{X}_{1}(t,\tau,T) = \sum_{k=1}^{n} \left\{ \sum_{\nu=0}^{m_{k}-1} \sum_{j=0}^{l} \left[A_{kj}^{(\nu)} X_{k}^{(\nu)}(t-j\theta) + B_{kj}^{(\nu)} X_{k}^{(\nu)}(t-T+j\theta) \right] + \int_{0}^{T} w_{k}(s) X_{k}(t-s) \, ds \right\} + \sum_{\nu \in A} c_{\nu}^{(3)} X_{1}(t+\tau-\nu\theta). \quad (3.5)$$

b) If $l \geq N$, then

$$\tilde{X}_{1}(t,\tau,T) = \sum_{k=1}^{n} \left\{ \sum_{\nu=0}^{m_{k}-1} \sum_{j=0}^{l} \left[A_{kj}^{(\nu)} X_{k}^{(\nu)}(t-j\theta) + B_{kj}^{(\nu)} X_{k}^{(\nu)}(t-T+j\theta) \right] + \int_{0}^{T} w_{k}(s) X_{k}(t-s) \, ds \right\} + \sum_{\nu \in B} c_{\nu}^{(3)} X_{1}(t+\tau-\nu\theta). \quad (3.6)$$

Remark 2: If $m_1 = m_2 = \cdots = m = 1$ then the predictor formulae (2.25), (2.26), (3.5) and (3.6) would not involve differentiation.

Example. Let $x_1(t)$ and $x_2(t)$ be two independent stationary random processes with the rational spectral densities $f_1(\lambda) = (\lambda^2 + 1)^{-1}$, $f_2(\lambda) = (\lambda^2 + 4)^{-1}$ and define $X_1(t) = x_1(t) + x_2(t)$, $X_2(t) = x_1(t) + x_2(t)$. Then, $(X_1(t), X_2(t))$ is a stationary random process with the spectral density matrix

$$\begin{bmatrix} (\lambda^2+1)^{-1} + (\lambda^2+4)^{-1} & (\lambda^2+1)^{-1} - (\lambda^2+4)^{-1} \\ (\lambda^2+1)^{-1} - (\lambda^2+4)^{-1} & (\lambda^2+1)^{-1} + (\lambda^2+4)^{-1} \end{bmatrix}$$

and
$$D(\lambda) = 4(\lambda^2 + 1)^{-1}(\lambda^2 + 4)^{-1}$$
, $2L = 0$, $2k = 4$, $m_1 = m_2 = 1$

Now, let Y(t) be the process given by $Y(t) = X(t) - \beta X(t-1)$, $|\beta| < 1$, and suppose we know the values of the process Y(t) in the interval [-1.5, 0]. If we apply Theorem 2.1. we can find for $\tau > 1$:

$$\begin{split} N &= 1, \ n = 2, \ l = 1, \ S > 1, \ 2L + m_k - 1 = 0 \\ R_1^{(1)}(\lambda) &= K_1, \ R_1^{(2)}(\lambda) = K_2, \ R_2^{(1)}(\lambda) = k_1, \ R_2^{(2)}(\lambda) = k_2 \\ \Phi_1^Y(\lambda) &= K_1(1 + c_{11}^{(1)}e^{-i\lambda}) + e^{-3i\lambda/2}K_2(1 + c_{21}^{(2)}e^{i\lambda}) \\ \Phi_2^Y(\lambda) &= k_1(1 + c_{21}^{(1)}e^{-i\lambda}) + e^{-3i\lambda/2}k_2(1 + c_{21}^{(2)}e^{i\lambda}) \end{split}$$

The equalities (2.5) and (2.6) become

$$\begin{split} &(1+c_{k_1}^{(1)}e^{-i\lambda})(-\beta e^{-i\lambda}+(1+\beta^2)-\beta e^{i\lambda})=-\beta c_{k_1}^{(1)}e^{-2i\lambda}+\\ &+(-\beta+(1+\beta^2)c_{k_1}^{(1)})e^{-i\lambda}+(1+\beta^2-\beta c_{k_1}^{(1)})-\beta e^{-i\lambda}\\ &(1+c_{k_1}^{(2)}e^{i\lambda})(-\beta e^{-i\lambda}+1+\beta^2-\beta e^{i\lambda})=-\beta e^{-i\lambda}+\\ &+(1+\beta^2-\beta c_{k_1}^{(2)})+(-\beta+(1+\beta^2)c_{k_1}^{(2)})e^{i\lambda}-\beta c_{k_1}^{(2)}e^{2i\lambda}. \end{split}$$

From the equations (2.14) and (2.15) we can find

$$c_{11}^{(1)} = c_{21}^{(1)} - \frac{\beta^2}{1+\beta^2}, \ c_{11}^{(2)} = c_{21}^{(2)} = \frac{\beta}{1+\beta^2}$$

and consequently

$$\Phi_{1}^{Y}(\lambda) = K_{1} \left(1 + \frac{\beta}{1 + \beta^{2}} e^{-i\lambda} \right) + e^{-3i\lambda/2} K_{2} \left(1 + \frac{\beta}{1 + \beta^{2}} e^{i\lambda} \right)$$

$$\Phi_{2}^{Y}(\lambda) = k_{1} \left(1 + \frac{\beta}{1 + \beta^{2}} e^{-i\lambda} \right) + e^{-3i\lambda/2} k_{2} \left(1 + \frac{\beta}{1 + \beta^{2}} e^{i\lambda} \right)$$

$$\begin{split} \psi_{1}^{(1)}(\lambda) = & \{-\beta e^{i\lambda(\tau-1)} + (1+\beta^{2})e^{i\lambda\tau} - \beta e^{i\lambda(\tau+1)}\}\{(\lambda^{2}+1)^{-2} + (\lambda^{2}+4)^{-1}\} \\ & - \left\{K_{1}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{i\lambda}\right) - K_{2}\frac{\beta^{2}}{1+\beta^{2}}e^{i\lambda/2}\right\}\{(\lambda^{2}+1)^{-1} + (\lambda^{2}+4)^{-1}\} \\ & - \left\{k_{1}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{i\lambda}\right) - k_{2}\frac{\beta^{2}}{1+\beta^{2}}e^{i\lambda/2}\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \\ & - \left\{k_{1}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{i\lambda}\right) - k_{2}\frac{\beta^{2}}{1+\beta^{2}}e^{i\lambda/2}\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \\ & - \left\{K_{1}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{i\lambda}\right) - K_{2}\frac{\beta^{2}}{1+\beta^{2}}e^{i\lambda/2}\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \\ & - \left\{k_{1}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{i\lambda}\right) - k_{2}\frac{\beta^{2}}{1+\beta^{2}}e^{i\lambda/2}\right\}\{(\lambda^{2}+1)^{-1} + (\lambda^{2}+4)^{-1}\} \\ & + \left\{-k_{1}\frac{\beta^{2}}{1+\beta^{2}}e^{-i\lambda/2} + K_{2}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{-i\lambda}\right)\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \\ & + \left\{-k_{1}\frac{\beta^{2}}{1+\beta^{2}}e^{-i\lambda/2} + K_{2}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{-i\lambda}\right)\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \\ & + \left\{-k_{1}\frac{\beta^{2}}{1+\beta^{2}}e^{-i\lambda/2} + k_{2}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{-i\lambda}\right)\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \\ & + \left\{-k_{1}\frac{\beta^{2}}{1+\beta^{2}}e^{-i\lambda/2} + k_{2}\left(1+\beta^{2} - \frac{\beta^{2}}{1+\beta^{2}} - \beta e^{-i\lambda}\right)\right\}\{(\lambda^{2}+1)^{-1} - (\lambda^{2}+4)^{-1}\} \end{split}$$

If we define $B_k^{(j)}(\lambda) = (\lambda^2 + 1)(\lambda^2 + 4)\psi_k^{(j)}$, k; j = 1, 2, then the constants K_1, K_2, k_1, k_2 can be found from the equations

$$\begin{split} B_1^{(1)}(i) &\equiv B_2^{(1)}(i) = 0, \quad B_1^{(1)}(2i) \equiv -B_2^{(1)}(2i) = 0 \\ B_1^{(2)}(-i) &\equiv B_2^{(2)}(-i) = 0, \quad B_1^{(2)}(-2i) \equiv -B_2^{(21)}(-2i) = 0 \end{split}$$

Then.

$$\begin{split} \tilde{Y}_1\bigg(0,\frac{3}{2},\tau\bigg) &= K_1Y_1(0) + \frac{\beta}{1+\beta^2}K_1Y_1(-1) + K^2Y_1\bigg(-\frac{3}{2}\bigg) + \frac{\beta}{1+\beta^2}K_2Y_1\bigg(-\frac{1}{2}\bigg) \\ &+ k_1Y_2(0) + \frac{\beta}{1+\beta^2}k_1Y_2(-1) + k_2Y_2\bigg(-\frac{3}{2}\bigg) + \frac{\beta}{1+\beta^2}k_2Y_2\bigg(-\frac{1}{2}\bigg). \end{split}$$

REFERENCES

- [1] P. Mladenović, O linearnoj prognozi višedimenzionalnih stacionarnih procesa sa neracionalnim spektrom, Magistarski rad, PMF, Beograd, 1981.
- [2] A. M. Yaglom, An Introduction to the Theory of Stationary Functions, Englewood Cliffs, Prentice-Hall, New York, 1962.
- [3] Й. Малишич, Экстраполирование стационарниих процессов в нерациональными плотностьями по значениям на конечном интервале, Publ. Inst. Math. (Beograd) (N.S.) **27** (**41**) (1980), 169–174.
- [4] Ю. А. Розанов, Стационарные случайные процессы, Физматгиз., Москва, 1963.

- [5] А. М. Яглом, Экстраполирование, интерполирование и фильтрация стационарных случайных процессов с рациональной спектральной платностю, Трудды Москов. Мат. Общ. 4 (1955), 333-374.
- [6] А. М. Яглом, Эффективные решения линейных аппроксимационных задач для многомерных стационарных процессов с рациональным спектром, Теор. Вероятност. и Применен. $\bf 3$ (1960), 265–292.

Odsek za matematiku Prirodno-matematički fakultet 11000 Beograd Jugoslavija (Received 15 06 1982)