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A UNIFIED CLASS OF POLYNOMIALS�

Hukum Chand Agrawal��

Summary. In this paper we propose to study the polynomial set
n
f
(�)
n

o
(x) satisfying

the functional relation

T (��)
n
f
(�)
n (x)

o
= f

(�+1)
n�1 (x); n = 1; 2; 3; . . . ;

where f(�)n(x) is the polynomial of degree n in x and T is the operator of in�nite order de�ned
by

T (��) =
1X
k=0

h
(�)
k

�k+1
� ; h

(�)
0 6= 0;

in which ��ff(�)g = f(� + 1)� f(�).

1. Introduction. In his recent communication the author [1] studied the

polynomial set
n
(p

(�)
n (x)

o
satisfying the condition

��

n
p(�)n (x)

o
= p(n� 1)(�+1)(x); n = 1; 2; 3; . . . (1.1)

A list of twelve polynomials is given which satisfy the above functional rela-
tion. In this paper we study another classi�cation of polynomials which includes
the class above as a particular case.

Consider the polynomial set
n
f
(�)
n (x)

o
; f

(�)
n (x) are the polynomials of degree

n in x, and the in�nite operator

T (��) � T =

1X
k=0

h
(�)
k �k+1

� ; h
(�)
0 6= 0; (1.2)

in which ��ff(�)g = f(�+ 1)� f(�).

�This work has been done under a fellowship of University Grants Commission, India.
��On study leave from Bundel Khand Post-graduate College, Jhansi (U. P.), India.
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We are concerned here with those polynomials f
(�)
n (x) which satisfy the con-

dition

T
n
f (�)n (x)

o
= f

(�+1)
n�1 (x); n = 1; 2; 3; . . . (1.3)

Obviously, for h
(�)
0 = 1 and h

(�)
1 = h

(�)
2 = � � � = 0 the condition ( 1.3) reduces

to (1.1).

2. Certain Fundamental Properties of T{Operators.

Theorem 1. If f
(�)
n (x) is a simple set of polynomials in �, then there exists

a unique di�erence operator of the form

T =

1X
k=0

h
(�)
k �k+1

� ; h(�) 6= 0 (2.1)

where h
(�)
k is a polynomial of degree � k in �, for which

T
n
f (�)n (x)

o
= f

(�+1)
n�1 (x); n � 1; (2.2)

Proof. From (2.1) and (2.2), we have

n�1X
k=0

h
(�)
k �k+1

�

n
f (�)n (x)

o
= f

(�+1)
n�1 (x): (2.3)

The above equation shows that h
(�)
k is uniquely de�ned and is of degree � k,

because f
(�+1)
n�1 (x) is of degree n� 1 for each n(n 6= 0).

One can easily show that

Theorem 2. A necessary and suÆcient condition that the simple sets of

polynomials f
(�)
n (x) and m

(�)
n (x) belong to the same operator T is that there exist

polynomial coeÆcients bk(x) of degree � k in x and independent of a and n, such
that

f (�)n (x) =
nX

k=0

bk(x)m
(�)
n�k(x); b0(x) 6= 0: (2.4)

De�nition. Let f
(�)
n (x) be the simple set of polynomials belonging to the

operator T de�ned by (1.2). If the maximum degree of the coeÆcient h
(�)
k in � is

m, we say that the set f
(�)
n (x) is of �-type m. If the degree of h

(�)
k is unbounded,

we say that f
(�)
N (x) is of �-type 1.

3. Some Properties of Sets of �-type Zero. According to the de�nition

of �-type zero, any polynomial f
(�)
n (x) corresponding to the operator T is said to

be of �-type zero, if

T =

1X
k=0

hk�
k+1
� ; h0 6= 0 (3.1)
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and
T
n
f (�)n (x)

o
= f

(�+1)
n�1 (x); (3.2)

where hk are independent of �.

Let A(t) (independent of �) be a formal power series obtainable from the
symbolic correspondence

T (A(t)) = t(1 +A(t)); (3.3)

where T (A(t)) stands for
P

1

k=0 hk(A(t))
k+1 , (h0 6= 0),

Again, let

A(t) =

1X
r=1

urt
r; (3.4)

and denote

[A(t)]k =

"
1X
r=1

urt
r

#k
by

1X
r=k

urkt
r:

Then, (3.3) on equating the coeÆcient of tr on both sides, gives

ur =

rX
k=0

hku(r+1)(k+1); r = 1; 2; . . . ; (3.5)

with h0u11 = 1.

Theorem 3. A necessary and suÆcient condition for f
(�)
n (x) to be of �-type

zero corresponding to the operator T is that f
(�)
n (x) possesses a generating function

of the type

(1 +A(t))�Q(x; t) =

1X
n=0

f (�)n (x)tn; (3.6)

where1 A(t) and Q(x; t) are independent of � and A(t) is given by (3.3) and (3.4).

Proof. Transforming both sides of (3.6) by T , we obtain

1X
n=0

tnT
n
f (�)n (x)

o
= (1 +A(t))�T (A(t))Q(x; t) =

= t(1 +A(t))�+1Q(x; t) =

1X
n=0

f (�+1)n (x)tn+1;

which gives T
n
f
(�)
n (x)

o
= fn�1(�+ 1)(x). Therefore, f

(�)
n (x) is of �-type zero.

Conversely, let f
(�)
n (x) be of �-type zero. Then from (3.2), we get

[(1� t)�� � t]

1X
n=0

tnf (�)n (x) = 0: (3.7)

1The generating function (3.6), in fact includes the generating functions given and studied
by Appell [2], She�er [8], Brenke [4], Boas and Buck [3], and Rainville [6, x77].
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Solving the above homogeneous-linear-di�erence equation, we get (3.6). Thus
the theorem is proved.

Corollary 1. A necessary and suÆcient condition for f
(�)
n (x) to be of

�-type zero and She�er A-type zero corresponding to the operator T and J 2, re-

spectively, is that f
(�)
n (x) possesses the generating function

(1 +A(t))� expfxH(t)g =

1X
n=0

f (�)n (x)tn; (3.8)

where A(t) and H(t) are independent of � and are given by (3.3) and J(H(t)) =
H(J(t)) = t, respectively.

Theorem 4. Let
n
f
(�)
n (x)

o
be a set of �-type zero polynomials having the

generating function

(1 +A(t))�Q(x; t) =

1X
n�0

f (�)n (x)tn:

A necessary and suÆcient condition for f
(�)
n (x) to satisfy the recurrence re-

lation

nf (�)n (x) =

n�1X
r=0

(�lr +mr(x))f
(�)
n�r�1(x); n � 1 (3.9)

is that there exist constants lk and polynomial coeÆcients mk(x) of degree � k in
x, independent of � and n, given by

A0(t)=(1 +A(t)) =

1X
r=0

lrt
r (3.10)

and

Q0(x; t)=Q(x; t) =

1X
r=0

mr(x)t
r ; (3.11)

respectively. Prime denotes di�erentiation with respect to t.

Proof. Di�erentiating both sides of (3.6), with respect to t, we get

1X
n=0

ntnf (�)n (x) = t[�A0(t)=(1 +A(t)) +Q0(x; t)=Q(x; t))(1 +A(t))�Q(x; t)

=

1X
n=0

nX
r

(�lr +mr(x))f
(�)
n�r(x)t

n+1:

2Here, as well as in what follows, J is de�ned by

J(D) � J =
1X
k=0

ckD
k+1; c0 6= 0; D � d=dx;

where the ck0s are independent of �.
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Equating the coeÆcients of tn, we get (3.9). Thus, the suÆcient part of the
theorem is proved.

For, the necessary part, let

P =

1X
n=0

f (�)n (x)tn; L =

1X
n=0

�nt
n and M =

1X
n=0


nt
n (3.12)

where r�r = lr�11, �0 = 0, r
r = mr�1(x) and 
0 = 0.

With these assumptions, (3.9) can be written as

dP

dt
=

�
�
dL

dt
+
dM

dt

�
P;

which after some simpli�cations, gives

�A0(t)=(1 +A(t)) +Q0(x; t)=Q(x; t) = �

1X
r=0

�rrt
r�1 +

1X
r=1


rrt
r�1:

Since A(t) and Q(x; t) are independent of �, comparing the coeÆcient of �,
we obtain

A0(t)=(1 +A(t)) =

1X
r=1

�rrt
r�1 =

1X
r=1

lr�1t
r�1

and

Q0(x; t)=Q(x; t) =

1X
r=1


rrt
r�1 =

1X
r=1

mr�1(x)t
r�1;

which are (3.10) and (3.11), respectively. Hence the theorem is proved.

Explicit form. The �-type zero polynomials satisfy the recurrence relation
(3.9), viz.,

nf (�)n (x) = (�l0 +m0(x))fn�1(�)(x) + (�l1 +m1(x))fn�2(�)(x) + . . .

+ (�ln�1 +mn�1(x))f
(�)
0 (x):

Eliminating f
(�)
n�1(x), f

(�)
n�2(x); . . . ; f

(�)
0 (x), we get the following explicit form

for f
(�)
n (x)

f (�)n (x) =
X sr11 s

r2
2 . . . srnn

r1!r2! . . . rn!
; (3.13)

where �lk + mk(x) = (k + 1)sk+1, for k = 0; 1; . . . ; n � 1; f
(�)
0 (x) = 1 and the

summation is taken over all positive integral values of r1, r2; . . . ; rn such that

r1 + 2r2 + � � �+ nrn = n. (3.13) shows that f
(�)
n (x) is a polynomial of degree n in

�.

Theorem 5. A necessary and suÆcient condition for f
(�)
n (x) to be of �-type

zero is that it satis�es a di�erence eguation of the form

��

n
f (�)n (x)

o
=

1X
k=1

ukf
(�)
n�k(x); (3.14)
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where uk is independent of n, � and is given by (3.3) and (3.4).

Proof. Applying �� to both sides of (3.6), we obtain

1X
n=0

tu��

n
f (�)n (x)

o
= A(t)(1 +A(t))�Q(x; t) =

1X
n=0

1X
k=1

ukf
(�)
n (x)tn+k :

Equating the coeÆcients of tn, we get (3.14).

Conversely, (3.14) can be written as

��fPg = A(t)P; (3.15)

in the notation of (3.12).

The solution of the di�erence equation (3.15) is

P =

1X
n=0

f (�)n (x)tn = (1 + A(t))�Q(x; t):

Thus the theorem is proved.

The di�erence equation (3.15) can be generalized as T (P ) = t(1 + A(t))P .

Thus, P =
P

1

n=0 f
(�)
n (x)tn is also the solution of the di�erence equation T (P ) =

t(1 +A(t))P .

The following results can be proved easily.

Corollary 2. If f
(�)
n (x) is of �-type zero and She�er A-type zero corre-

sponding to the operator T and J, respectively, then so are the sets

f(��D)f
(�)
n+1(x)g; f(�

2
�D

2)f
(�)
n+2(x)g; . . . ;

where D � d=dx.

Corollary 3. If
n
f
(�)
n (x)

o
is �-type and She�er A-type zero, then

f (�+�)n (x+ y) =

nX
r=0

f
(�)
n�r(x)f

(�)
r (y): (3.16)

(3.16) can also be written as

n!f (�+�)n (x+ y) =

nX
r=0

�
n

r

�
((n� r)!f

(�)
n�r(x))(r!f

(�)
r (y));

which shows that fn!f
(�)
n (x)g is a cross-sequence (for de�nition, see [7]).

The result (3.16) can be generalized as

f (�1+���+�r)n (x1 + � � �+ xr) =
X

m1+���+mr=n

f (�r)m1
(x1) . . . f

(�r)
mr

(xr): (3.17)
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Theorem 6. If
n
f
(�)
n (x)

o
is of �-type zero corresponding to the operator

��, then so is
n
f
(�+�n)
n (x)

o
corresponding to the operator � , de�ned by

�(z) = z(1 + z)�� (3.18)

where z = u(t)=(1� u(t)) and t = u(t)(1� u(t))� .

Proof. With the help of the following generating relation [5]

1� u(t)]1��F (x; u(t))

1� (1 + �)u(t)
=

1X
n=0

f (�+�n)n (x)tn (3.19)

where t = u(t)(1� u(t))� , the theorem can be proved easily.

4. A Characterization for �-type Zero Polynomials. Let us consider

the set of polynomials
n
 
(�)
n (x;A;Q)

o
de�ned by

 (�)n (x;A;Q) =
�
E�1
� (1 +A(r�))

	�
Q(x;r�)

(�)n

n!
; (4.1)

where A(t) and Q(x; t) are formal power series in t independent of n.

(4.1), gives

1X
n=0

 (�)n (x;A;Q)tn =
�
E�1
� (1 +A(r�))

	�
Q(x;r�)(1� t)��: (4.2)

Now the application of the formula �(r�)fa
�g = a��(1�a�1), with �(x) =P

1

r=0 brx
r, reduces (4.2) to the form

(1 +A(t))�Q(x; t) =

1X
n=0

	(�)
n (x;A;Q)tn: (4.3)

Hence, we conclude that

Theorem 7. A necessary and suÆcient condition for f
(�)
n (x) to be of �-type

zero is that it is given by the operational formula

f (�)n (x) =
�
E�1
� (1 +A(r�)

	�
Q(x;ra)(�)n=n!; (4.4)

and then the polynomial is de�ned by the generating function

(1 +A(t))�(x; t) =

1X
n=0

f (�)n (x)tn:

5. Algebraic Structure. Consider the set G1 consisting of all �-type zero
polynomials corresponding to the operator T as its elements, i. e.,

G1 =
n
f (�)n (x) : �(f (�)n (x)) = f

(�+1)
n�1 (x)

o
; (5.1)
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where � is �xed and given by (3.1). For the sake of brevity, we denote the elements

of G1 by f
(�)
n , g

(�)
n ; . . . .

Theorem 8. The set G1 is an Abelian Group with respect to the operation �
de�ned by

p(�)n � q(�)n =

1X
k=0

p
(0)
n�kq

(�)
k : (5.2)

Before proving Theorem 8, we derive the following lemma:

Lemma 1. If (1 +A(t))� =
P

1

n=0 I
(�)
n tn, then (5.3)

(i) I
(�)
n 2 G1,

(ii) I
(0)
r =

�
0 for r 6= 0

1 for r = 0;
(5.4)

(iii) the explicit form of any element f
(�)
n 2 G1 isX
I(�)r f

(0)
n�r; (5.5)

(iv) I
(�)
n is the identity element for the set (G1; �).

Proof of the Lemma 1. By Theorem 3, it is evident that I
(�)
n 2 G1. Putting

� = 0 in (5.3), we obtain

1 =

1X
n=0

I(0)n tn:

On comparing the coeÆcients of various powers of t, we get (5.4).

For every f
(�)
n 2 G1, by Theorem 3, we have

(1 +A(t))�Q(x; t) =

1X
n=0

fznal(x)t
n;

in which the substitution � = 0 gives

Q(x; t) =

1X
n=0

f (0)n (x)tn: (5.6)

Now, putting the value of (1 + A(t))�, Q(x; t) from (5.3) and (5.6), respec-
tively, in (3.6), and equating the coeÆcients of tn, we get the required result (5.5).

Since

f (�)n � I(�)n =

nX
r=0

I(�)r f
(0)
n�r = f (�)n ; (by (5.5)),

and

I(�)n � f (�)n =

nX
r=0

I(0)r f
(�)
n�r = f (�)n ; (by (5.4));
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I
(�)
n is the identity element for the set (G1; �). Thus the lemma is proved.

Proof of Theorem 8. With the help of the lemma above, the theorem can be
proved easily.

Theorem 9. The mapping � : G1 ! G1 such that

�(f (�)) = T (f (�)n ); 8f (�)n 2 G1 (5.7)

is an isomorphism.

Proof. The proof is simple and hence omitted.

6. Polynomials of �-type m. Before de�ning �-type m polynomials con-
sider the following example.

The classical Hermite polynomials are de�ned by means of the relation [6]

exp(2xt� t2) =

1X
n=0

Hn(x)t
n=n!;

which gives

�xfHn(x)g = 2Hn�1(x) + 4(x+ 1)Hn�2(x) + 8x(x + 2)Hn�3(x) + . . . (6.1)

The example above suggests the following extension of Theorem 5.

Lemma 2. For every polynomial f
(�)
n (x) there exist unique polynomial coeÆ-

cients u
(�)
k of degree � k in � and independent of n, such that

�d

n
f (�)n (x)

o
= u

(�)
1 f

(�)
n�1 + u2f

(�)
n�2(x);+ � � �+ u(�)n f

(�)
0 (x); (n � 1): (6.2)

De�nition. A set of polynomials
n
f
(�)
n (x)

o
is said to be of �-type m if in

(6.2) the maximum degree of the coeÆcients u
(�)
k is m. If the degree of u

(�)
k is

unbounded as k !1 we say that the set
n
f
(�)
n (x)

o
is of �-type 1.

From Theorem 5 and Lemma 2, we conclude

Theorem 10. The set of polynomials
n
f
(�)
n (x)

o
is of �-type zero if, and only

if, it is of �-type zero.

caps Theorem 11. A necessary and suÆcient condition for the polynomial

f
(�)
n (x) to be of �-type m is that

1X
n=0

tnf (�)n = C exp

"
��1
� log

 
1 +

1X
r=1

u(�)r tr

!#
; (6.3)

where C is an arbitrary periodic function of period unity in �.
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Proof. From (6.2), we have

��

(
1X
n=0

f (�)n (tn

)
=

1X
n=0

f (�)n (x)tn
1X
r=1

u(�)r tr

or "
�� �

1X
r=1

u(�)r tr

#
1X
n=0

f (�)n (x)tn = 0: (6.4)

(6.4) is a homogeneous-linear-di�erence equation of order one, whose solution
is (6.3). The converse part can be proved easily by transforming both sides of (6.3)
by ��, and hence the proof is omitted. Thus, the theorem is proved.

7. Polynomials of 
-type m. In this section we de�ne another class of
polynomials which are said to be of 
-type m, based on Lemma 3 (an extension of
Theorem 4) given below. We also give a generating function for 
-type m polyno-
mials.

Lemma 3. For every polynomial f
(�)
n (x) there exist unique polynomial coeÆ-

cients �
(�)
k (x) of degree � k in � and independent of n, such that

nf (�)n (x) = �
(�)
1 (x)f

(�)
n�1(x)+�

(�)
2 (x)f

(�)
n�2(x)+� � �+�

(�)
n (x)f

(�)
0 (x); (n � 1): (7.1)

De�nition. A set of polynomials
n
f
(�)
n (x)

o
is said to be of 
-type m if in

(7.1) the maximum degree of the coeÆcients �
(�)
k (x) is (m+ 1) in �.

From the de�nition above and Theorem 4, it is evident that every �-type zero
polynomial is also of 
-type zero.

Theorem 12. A necessary and suÆcient condition for the polynomials

f
(�)
n (x) to be of 
-type zero is that

1X
n=0

tnf (�)n (x) = K exp

 
1X
r=0

�
(�)
r+1(x)t

r+1=(r + 1)

!
; (7.2)

where K is an arbitrary constant (independent of t).

Proof. The suÆcient part of the theorem can be proved easily by di�erenti-
ating both sides of (7.2) with respect to t.

For the converse part write (7.1) as

Æ

Æt

1X
n=0

f (�)n (x)tn =

1X
n=0

tn�1
nX

r=1

�(�)r (x)f
(�)
n�r(x) =

1X
n=0

f1n (x)tn
1X
r=0

�
(�)
r+1(x)t

r ;

or "
Æ

Æt
�

1X
r=0

�
(�)
r+1(x)t

r

#
1X
n=0

f (�)n (x)tn = 0: (7.3)
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On solving the di�erence equation (7.3), we get (7.2).

8. Generalized �-type Zero Polynomials. We conclude this paper by
giving a generalization of �-type zero polynomials, introduced in x 3. We shall also
give two characterizations for these polynomials.

Let us consider the following di�erence-operator of in�nite order

T (��) � T =
1X
k=0

gk�
k+r
� ; (8.1)

in which g0 6= 0, gk (k � 0) are independent of � and r is some �xed positive
integer.

De�nition. Any polynomial G
(�)
n (x) for which there exists an operator T of

the form (8.1), such that

T
n
G(�)
n (x)

o
= G

(�+r)
n�r (x); (n = r; r + 1; . . . ) (8.2)

where r is some �xed positive integer, we call a Generalized �-type zero polynomial.

Obviously, for r = 1, (8.2) reduces to the condition required for G
(�)
n (x) to be of

�-type zero.

Theorem 13. For any polynomial G
(�)
n (x) to be a Generalized �-type zero

polynomial, the necessary and suÆcient condition is that it satis�es a generating
relation of the form

rX
i=1

Qi(x; t)(1 +B("it))
� =

1X
n=o

G(�)
n (x)tn; (8.3)

where, B(t) is de�ned by the relation

T (B(t)) = tr(1 +B(t))r ; (8.4)

and "1; "2; . . . ; "r are the r roots of unity.

Proof. By operating both sides of (8.3), by T it can be shown easily with the

help of (8.4) that G
(�)
n (x) satis�es the condition (8.2).

Conversely, let us write

1X
n=0

G(�)
n (x)tn = G (8.5)

Therefore, from (8.2) and (8.5), we have

[T � trEr
�]G = 0: (8.6)

It is always possible to �nd out another di�erence-operator of the form

M(��) =

1X
k=0

jk�
k+1
� ; j0 6= 0 (8.7)
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such that
T (��) = (M(��))

r : (8.8)

Hence from (8.6) and (8.8), we obtain

[(M(��))
r � (1 +��)

rtr]G = 0:

Consequently, if "1; "2; . . . ; "r, are the r roots of unity, we have

[M(��)� (1 + ��)"it]G = 0; (i = 1; 2; . . . ; r): (8.9)

Solving the homogeneous-linear-di�erence equations above we get

G =

rX
i=1

Qi(x; t)(1 +B("2t))
�

where B(t) is given by
M(B(t)) = t(1 +B(t)): (8.10)

Therefore, the theorem is proved.

Like Theorem 2, one can show that

Theorem 14. If the set
n
G
(�)
n (x)

o
corresponds to the operator T, then a

necessary and suÆcient condition for the set
n
K

(�)
n (x)

o
to correspond also to the

same operator T is that there exist polynomial coeÆcients dk(x) of degree � h in x
and independent of n and �, such that

G(�)
n (x) =

nX
i=0

di(x)K
(�)
n (x); d0(x) 6= 0: (8.11)

Finally, we give still another characterization for generalized �-type zero poly-
nomials.

Theorem 15. LetM(��) be the operator of type (8.7) and u(�) a function of

bounded variation on (0;1) such that

1Z
0

du(�) 6= 0. Then G
(�)
n (x) is a Generalized

�-type zero polynomial if, and only if,

1Z
0

fM(��)g
kG(��n)

n (x)du(�) = cn;k; (k = 0; 1; 2; . . . ) (8.12)

where cn;k are elements of an in�nite triangular matrix, in which c+n+ r; k + r =
cn;k.

Before proving the theorem above we �rst prove the following lemma:

Lemma 4. (8.12) is satis�ed by one and only one G
(��n)
n (x) for some given

M(��) and u(�) satisfying the conditions stated in the theorem above.



A uni�ed class of polynomials 15

Proof of Lemma 4. From Lemma 1 we know that the polynomials I
(�)
n de�ned

by

(1 +B(t))� =

1X
n=0

I(�)n tn

are of �-type zero corresponding to the operator M(��), where M(B(t)) = t(1 +

B(t)). We also have I
(�)
0 = 1.

Let G
(��n)
n (x) satisfy (8.12); then we can write

G(��n)
n (x) =

nX
i=0

A(n; i; x)I
(�)
i :

Therefore

fM(��)g
kG(��n)

n (x) =
n�kX
i=0

A(n; i+ k; x)I
(�+k)
i : (8.13)

If we write
1Z
0

I
(�+k)
i du(�) = ei;k;

then from (8.12) and (8.13), we get

n�kX
i=0

A(n; i+ k; x)ei;k = cn;k; (k = 0; 1; 2; . . . ; n): (8.14)

Since A(n; i; x) = 0, if i > n, it follows that the determinant of the system

(8.14) is

nY
k=0

e0;k 6= 0, and since e0;k =

1Z
0

du(�) 6= 0, we conclude that A(n; i; x)

(i = 0; 1; . . . ; n) are uniquely determined.

Proof of Theorem 15. Let G
(�)
n (x) be a Generalized �-type zero polynomial.

Since G
(�)
n (x) is a polynomial of degree n in �, we have

[M(��)]
iG(��n)

n (x) = 0; if i > n

or
cn;i = 0; if i > n:

Again, since

Mk(��)G
(��)
n (x) =Mk+r(��)G

(��n�r)
n+r (x)

we get cn;k = cn+r;k+r.
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Conversely, let G
(��n)
n (x) satisfy (8.12). Then

1Z
0

Mk+i(��)G
(��n�i)
n+i (x)du(�) = cn+i;k+i = cn;k:

The substitution

S(�)n (x) =M i(��)G
(��n�i)
n+i (x)

reduces (8.15) to
1Z
0

Mk(�k)S
(�)
n (x)du(�) = cn;k:

But by Lemma 4, (8.12) is satis�ed by the unique polynomial G
(��n)
n . There-

fore S
(�)
n (x) = G

(��n)
n (x).

This completes the proof of the theorem.

I am grateful to Professor R. P. Agrawal for his kind guidance during the preparation of

this paper.
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