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SOME PERTURBATION RESULTS ON
MULTIVALUED DIFFERENCE EQUATIONS

J. Schinas, A. Meimaridou

Abstract If F and G are multivalued periodic upper semi-continuous maps and all solutions
of x(n+1)&F(n, x(n)) tend to zero, then there exists a sufficiently small >0 such that
all solutions of x #+1)EF(n, x (1) +¢ G (n, x(n)) are bounded. If moreover F and G are
homogeneous, then the zero solution of the last equation is uniform stable.

1. Introduction and preliminaries. In this paper we study some perturba-
tion results concerning mulitivalued homogeneous periodic difference equations.
In our main result (Theorem 3) we show that, if all solutions of such an equa-
tion tend to zero asymptotically, then the zero solution of a suitably perturbed
equation is uniform stable. For this purpose, previously, we prove some inte-
resting results concerning toundedness and stability. Our method is based on
that of Lasota and Strauss (1971), which is referred to multivalued autono-
mous homogeneous differential equations. Related results were given by De
Blasi and Schinas, (1973, 1976), for the case of multivalued autonomous ho-
mogeneous difference equations and multivalued periodic homogeneous diffe-
rential equations, respectively.

Denote by N, ={n,, n,+1, ...}, n, any positive or zero integer, F a

real Euclidean space with norm |-|, B(r)=B(0, r) (B(r)) the open (closed)
ball with center 0€ E and radius r>0(r=0), ¢(E) the set of nonempty com-
pact subsets of E, |A|=sup{|x|:xE A4}, AEc(E). In c¢(E) addition and mul-
tiplication by nonnegative scalars are defined by A+B={x+y.xEA4, y<B},
AA={rx:xc 4}

A map F:N,x E->c(E), (n, x)—>F(n, x), is called upper semicontinuous
(u.s.c)at xEE, uniformly in n, if for every £>0 there exists a §=38(g, x) >0
such that |x—y|< 38 implies F(n, y)CF(n, x)+B(e).

We denote by @, the set of all maps F:N,x E—>c(E), which are u.s.c.
for all x€ E, uniformly in #, and p-periodic in n& N, for all x, i.e., there
exists a p& N, such that F(n+p, x)=F(n, x).

Let ny©N,, x,EE, FE®,. A function x:N,—E is called solution of
the multivalued difference equation

(1) x(n+1)EF(n, x(n),
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if x(n,)=x, and x(n) satisfies (1), for all n&N,,,. Such a solution will be
denoted by x(n, n,, Xx,).

Let n,& N, and Q be a nonempty subset of E. For any n€N,,, the set
R(n, n,, Q) consisting of all points y© E such that there exists an x,&Q and
a solution x (n) of (1) with x(n)=x, and x(n)=y is called the set of attaina-
bility of (1) starting from Q.

A map F:N,x E-c(E), FE®D,, is called (positively) homogeneous with
respect to x, if for any s>0, F(n, sx)=sF(n, x), (n, X)© Ny x E.

We denote by y, the set of all maps in @, which are homogeneous
with respect to Xx.

In the sequel we need the following lemmas, which have been proved in
De Blasi and Schinas (1973).

h
Lemma l. LetF,,F,,... F,E®,(resp. y,). Then the maps defined by 3 F; (n, x),
i=1

i=

h
U Fi(n, x), (n, X)EN,x E, are in @, (resp. y,). Moreover if FE®, (resp. o)
=1

also the map defined, for each (n, x)E Ny, xE, by \J eF(n,x),0<p<1,isin®,
e€[0, o]

(resp. ¥p)-

Lemma 2. Let {F,} be an infinite sequence of maps in ©, (resp. y,).
such that F,,, m, x)CF.(n, x), (n, X)EN,xE, kEN,. The map defined, for

each (n, X)EN,xE, by F(n, X)= "\ F.(n, x) is in @, (resp. y,).
k=1

Lemma 3. For any ny&N, and QEc(E), the set of attainability of (1)
R(n, ny, Q)cc(E), for any n& Ny,.

2. Boundedness of solutions. Theorem 1. Let 0,,={0, 1,...,p—1}x
B(r), r>0. Suppose that (i) {F,} is an infinite sequence of maps F,:N,x E—c
(E), F,€®,, and F,,, (n, x) CF,(n, X) (n, x) EN, X E, kEN,; (ii) every solution

x(n)=x(n, ny, X), (ny, X)EQ,.,, of (1) in which F(n, x)=\ F(n, X), app-
k=1

roaches zero as n— oo, Then there exist k<N, and L=r such that every so-

lution x (n)=x(n, ny, Xo), (Mg, X)EQ,,,, of

20 x(n+1)EF, (1, x ()

satisfies | x (n)| =L, n< Np,.

We omit the proof of the above theorem, since it is the discrete analo-
gue of Theorem 1 of De Blasi and Schinas (1976). The only changes we need
in ou. case are the following: (i) to consider the set Q,,={0, 1,..., p—1}

x B(r) instead of Q of the above paper, (i) to consider the number IR, |
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instead of H of the above paper, where R, is defined by the relations

Rl (x0)=Fk(09 xO)’ Rz(x0)= U Fk(l’ X), ] Rp(x0)= U Fk (p_l’ X),
xXERy XERp—1
R,= U R,(x,); and (iii) in order to prove that our corresponding T} — o,

xEB ()
we apply Lemma 3.

Corollary 1. Let F, GE®, and suppose that all solutions x(n)=
=x(n, ny, x,) of (1) with (ny, x)&Q,,, tend to zero as n—>co. Then there
exist ¢, >0 and Lzr such that every solution x(n)=x(n, n,, x,) of

®) x(n+ )EF(n, x(M)+G (n, x(m), O=exe,,
with (ny, x,)EQ,., satisfies |x(n)| <L, n& Ny,.
Proof. For any k& N,, define

6)] F.(n, x)=F(n, x)+ U G, x), xEE.
2&[0, 1/k]

From Lemma 1, F, €®,. Since, moreover, Fy ., (n, X) CF, (n, x) and (" F,(n, X)=

k=1
=F(n, x), hypotheses (i) and (iiy of Theorem 1 are fulfilled. From the same
theorem there exist k&N, and L=r such that every solution x (n)=x (n, n,, X,)
of (2,) with (n,, x,)&Q, ,, where F, is given by (4), satisfies | x (n) | <L, n & N,.
In particular, this inequality is satisfied by all solutions x (n)=x(n, n,, x,) of
(3) with (n,, x))©Q,,,, where 0=<e=<1/k=¢, because F,(n, x)DF(n, x)+
+eG(n, x).

The next corollary is a particular application of Corollary 1 to the single-
-valued case. ‘

Corollary 2. Let f, g:NyxE—E, f, gc®,, and suppose that all so-
lutions x (n)=x(n, n,, x;) of

&) x(n+1)=f(@n, x@)

with (ny, x,)&Q,, , tend to zero as n— . Then there exist ¢ >0 and L=r
such that every solution x (n)=x(n, ny,, x,) of

(6) x(n+D=f(n, x(W)+eg@m, x(n), 0=e=¢,
with (n,, xX)EQ,,, satisfies |x(n)|<L, n< Ny,.

Example 1. Consider the multivalued difference equations
() x(n+DCa(m+1)B(|x@)]),
®) x(n+DSa@m+1)B(|xm)|)+1/kB(|x®)]),
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where a(n)=1, when »n is even, a(n)=%, when n is odd. Clearly, all hypot-

heses of Corollary 1 are satisfied. Indeed, any solution x(n) of (7) satisfies
|x(n)|<27"2|x,|, when n is even, and |x(n)|<2~+V/2|x,,, whenn is odd,
nEN,. So, there is k&N, such that all solutions of (8) are bounded.

3. Uniform Stability. Theorem 2. Let Q,={0, 1, ..., p— 1} x E. Suppose
that (i) {F,} is an infinite sequence of maps F,:NyxE->c(E), F,Cy, and
F.,(n, x) CFy(n, %), (n, X)EN, x E, k& Ny; (ii) every solution x (1) = x (1, ny, X),

(ny, X)EQ,, of (1), in which F(n, xy= (" F(n, x), approaches zero as n— .
k=1

Then there exist kEN, and L=1 such that every solution x(n)=x(n, n,, X,),

(ny, x)EQ,, of (2,) satisfies,

) |x(n)|<L|x,|, n&Ny.

Proof. By Theorem 1, there exist k& N,, L=1, such that every solu-
tion z(n) of (2,) with initial values in Q, , satisfies

(10) |z(m)| <L, n&N,,.

Let x(n)=x(n, n,, x,) be any other solution of (2,) with (n,, x))&Q, and
x,70. Set z(n)=|x,|"' x(n). Dividing both sides of (2;) by |x,| and taking
into consideration the fact that F, is homogeneous in x, we find that z(n) is
solution of (2,). Since (1,, 2,)EQ,,,, z(n) satisfies (10) and so (9) holds for
x,7#0. When x,=0, since F, is homogeneous m x, it is easily seen that the
only solution of (2,) with initial values (n,, 0) is x(n)=0. This completes
the proof.

Theorem 3. Let F, GEy, and suppose that all solutions x(n)=
=x(n, ny, X,) of (1) with (ny, x,)EQ, tend to zero as n—>oo. Then there
exist ¢,>0 and L=1 such that every solution x(n)=x(n, ny, x;) of (3) with
(1, X,)EQ, satisfies | x(M)|<L|x,|, 1€ Ny,.

Proof. Define the maps F, as in the proof of Corollary 1. From Le-

mma 1, F,Ey,. So, hypothesis (i) of Theorem 2 is satisfied for (4), and
Theorem 2 applies. The conclusion of the proof is as in Corollary 1.

Corollary 3. Let f, g:N,x E~E, f, g&<y,, and suppose that all so-
lutions x (n)=x(n, ny,, x,) of (5) with (n,, x)&Q, tend to zero as n—>co.
Then there exists ¢, >0 and L=1 such that every solution x(n)=x(n, n,, X,)
of (6), with (ny, X,)EQ,, satisfies |x(n)|<L|x,|, nC Ny,.

Example 2. Consider the following equations in E
(1) x(n+1)Ca@m+1)B(|x®m)|),

(12) x(n+1)Ea(n+1)B([x@)|)+BM/k-B(|xn)]),
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where a(n)=1, B(n)=0, when n is even, and a(n)=1/2, B(n)=1, when n is
odd. Then all hypotheses of Theorem 3 are satisfied, since, for all solutions
x (n) of (11), we have | x (n) |<2-"?|x,|, when n is even, |x(n)|=2-("+V/2|x |,
when 7 is odd. For k=2, we find that all solutions of (12) satisfy the inequa-
lity x(n)|< |x,|. Note that, for k€ N,, the zero solution of (12) is expo-
nentially stable, because |x(n)|=<((k+2)/2k)"?|x,|, when n is even, and
[x(m)|<((k+2)/2k)"+Y2| x|, when n is odd.
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