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GENERALIZATION OF AN INEQUALITY OF G. POLYA CONCERNING
THE EIGENFREQUENCES OF VIBRATING BODIES

1. Joé, L. L. Stacho

1. If Q is a domain of RV (the Euclidean N-space, N>1) whose clo-
sure is C? -diffeomorphic with BN (the closure of the open unit ball BN in
RN), then it is well known ([1], [2]) that the eigenvalues of the Dirichlet problem
98] Au+ANu(x)=0 (x€Q)

U I ag =0

form a positive monotone increasing sequence 0<A (QA<SA,(Q) ... and
they can be given by

[ 1gradf)2dy.
(2) ' A2(Q)= inf sup 2 ——

! temgrer flle@

where M; is standing for the family of the j-dimensional subspaces of
C3 (Q). The values A;(Q)= +]/AJ?(Q) are interpreted physically as the
j-th eigenfreqgency of the homogeneous Q sharped and at the boundary

fixed vibrating body.
For N=2 Payne and Weinberger ([10]) proved that
sup | A, (Q) ___areaQ =J
Q length 0 Q

where the supremum is taken over all possible Q-s. On the other hand develo-

ping an idea of E. Makai [3], G. Pélya [4] obtained the estimate

3) sup [ A, @22 T,
Qe@ lengtho Q| 2

where € denotes the family of all open convex subsets of R? Tt is not hard
to see that Pélya’s method applies also for N-dimensional convex bodies.

and yields!)

. 1., Q T

3 C, (&)= sup |A Q) _Yovi: | T
®) (@ ere[ R

1y vol,, denotes the k-dimensional Hausdorff measure.
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However

sup [Al (Q) _voly& 1 00
Q voly—, 0 Q

up to three dimension as it is pointed out in [13] by E. Makai (if Q ranges
over all RN-domains described at the beginning of this paper).

Therefore it may have some interest to look for large classes K of
RN-domains such that

sup Al (Q) M < 0
QcHK voly_,0Q

Here we shall prove the following

Theorem Denote by K the set of those domains QC RN (N>3) for which
there exists a C*-diffeomorphism T:BN<«s>Q and Jor which the Minkowski curva-
ture with recpect to the outward from Q directed normal vector of 0Q is non
negative at any point of 0Q. Then

voly Q T
4 ¢ = Sup |A (Q —H "=
@ m%)sm%[l()mmﬂaQJ 2

Proof. First we prove the inequality ¢, (K) <m/2. It is based on two
observations.

Lemma 1. For any open subset Q of RN (N=1) such that
supvoly_; 0Q_o<oo(Q_, &f {x & Q: dist (x,0Q)>p}) we have
>0
vol, £ kd
voly_,0Q 2

Lemma 2. For each QC S the function p—>voly_,0Q__ is monotone

decreasing in [0, o) (and hence voly_, 0Q < lim VolN_IOQ_pzvolN_l()Q).
p—0

®) A(Q

To prove the converse inequality (i. e. ¢, (K) >=7/2) we need only to re-
mark that, by a theorom of R. Courant [11], the function

vol, Q
voly_,0Q

is continuous in the topology generated by the Hausdorff metric on @, whence

Rl (Q) = Al (Q)

C,(H)= sup R (Q) =supR, (Q) =
QeenX 2

2. Proof of Lemma 1. This statement is essentially proved by G. Pdlya
in [4]. For the sake of completeness we sketch it here concisely. Set g, =
sup {p>0:Q_,40}, s=sup voly_, Q__, I=voly Qs and let £: (0, p,)—(0,1) be

>0

the function defined by
€ (p) = (volyQ —voly, Q_)s
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and & (x) = dist (x, 0L2), respectively. By (2) we obtain

f|gradf]2 figfad(CPOEOS)iz
A@= inf 2 < inf
fecs (@) FAIFZIG 0 Cy(0, ) fl(p0503[2
a

Applying [7 Theorem 3.2.12, p. 249] to perform substitutions in the
right side of the above inequality, we see that

[1Te EEIP-[E (@2 voly_, 0Q_,dp
A< inf 2 =

[
&C} (0, ) )
e Jlo EENFvoly_0Q o do
0
1 1
f[CP, )] -[voly_, 0Q_,PdE f(‘P/)2
—  inf 2 . < inf 0 —
€Cy0, ) +€ Co(0, o0
@ [o@rdt:s e e
0 0

Since £’ (p)=voly_,0Q_,/s for almost all p & (0,p,) (cf. [7,3.2.34, »p.
271]). Observe that the last term here is the principal eigenfrequency of a
vibrating chord of length / fixed only at one of its endpoints. Therefore, as it is
well known (cf. [1,p. 71]) the value of the right side is equal to (r/20)2. which
completes the proof of Lemma 1.

3. Proof of Lemma 2. Since Q is C*-diffeomorphic to BV, there exist
a point p & 0Q and a C>-mapping F:RV™!'— RV having anon-degenerate deri-
vative tensor?) everywhere on RN™! such that F constitutes a one to one cor-
respondence between RN~! and (0 Q)-{p}. Let n(x) denote the outward from Q
directed normal vector (with unit length) of 0Q at the point F(x). Introducing
the mapping F*:RN"!x R— RN defined by

© F*(x, §) = F()+&n (%)
and the function on RN~!

7 h (x)=sup {p=>0:dist (F* (x, — p), 0Q) = ¢},

it is easy to observe that F* constitutes a one to one correspondence between

the sets D={(x,—p)ERN:0 < p < h(x), x&R¥"'} and F*(D).

. . OF
2) j.e. the rank of the matrix ox

X
of RN-1,

is equal to N—1 at every point

oF,-}N N—1

an i=1,j=1

i
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As it is well known, the mapping x> n(x) is C'-smooth®) and hence F*
is also Cl-smooth.

Observe, that using the notations D* = {(x, A (x)):x € RV"1}, F(c0) =
=p, h(0)=sup{p > 0:dist(F*(p,—p), 0Q)=p} and n(c0) = [the normal
vector at p of 0 directed outward from Q] we have

®) Q=F*(DUD¥U(F ()~ (0,2 (0) ] - n(c0)).

For, if y is an arbitrary point of Q then for some x & RV™! or x= oo,
F(x) is the projection of y on 0 Q. Thus for some of these x and for some
£€>0 we have dist (F(x)—&- n(x), 0Q)=dist (F(x)—£-n(x), F(x))=% and we
can write y=F(x)—£-n(x). Then the triangle inequality
entails that for all p & [0, &]. dist (F(x)—p-n(x), 0 Q)=dist (F(x)—p-n(x),
F(x))=p holds, which shows (by the definition of 4) that A4 (x)>E. This pro-
ves (8).

Since the set D* coincides with the graph in R¥"!x R of the function %
and since the function % is upper semicontinuous (cf. [6]), we have volyD* =0,
Then from the smoothness of F* we obtain volyF* (D*)=0. Since the mapping
F* is injective on D, for any f & L'(Q), we have the following integral formula

Jr= [ r=[ 1Pz, =) Jac F* (v, — £) =
Q

F*(D) D
h(x)
= [ [fE®-E-n®) Fac (F@)-E-nx)dEdx.
RN—1 ¢
0 F*
To the operations with the matrix —()(Tg)* we fix an arbitrary orthogonal

sistem of unit vectors v'(x),..., vW7!(x) each of which is lying in some prin-
cipal direction of the surface 0Q at the point F(x) (x&RN~Y). Since the rank

oF
of the matrix 7); is equal (N —1) everywhere, for any fixed x and for any

index i &{1,..., N—1}, there exists a unique vector u (x) in RV gych
that

OF
(an E(x)-u"(x)r—V"(x) @E=1, ..., N-1; x&RVN ™Y,
Now, if K;(x) denotes the main curvature (with respect to the normal

n(.) of 0Q the direction v/(x) at the point F(x) (x & RNY), then, as it is
well knovn from elementary differential geometry (cf. [5, p. 132]), we have

0
‘ﬁ‘ )W ()=K;(x):Vi(x) (i=1,..., N—1; x & RV71),

3) Namely, the i-th component of n(x) can be given as

O0FJN—1 N N 0F1N—1 N 2
v-det([J]. . ) z {det ([—J—C} . )} ,
ox;1j=1, i+k=1/] 2 ox;|j=1, r+k=1

where v= 41 or—1 independently of x according to the choice of F (cf [5, p: 92)).
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Thus, introducing the matrices U=[u!,..., ¥¥N~1] (of type (N — 1) x -1

K, 0
and K= ) (of type (N—1)x (N —1)), we obtain from (11) and (12)
0 * KN—l
- On oF
(13) ox U=-a; UK.

Thus we have

oF on
__}_E. —\ n
ox ox

I

E +E. 0—F— UKU™! n |= E(I+E,UKU“1), nl=
ox 0x ox

OF ] [I+EUKU-' 0
ox’ 0 1]
* | ; |
Jac(—aF—>: det —{)—F—FE--@l, n|i=| det E, nl -
d(x, £) ox  Ox l dx

:4 det [%5_ n]’ : ! det [1+a1<]).

Now we derive a formula for the value of voly_, 0 Q_, by the aid of (10)
and (14). To this we remark, that the function p+> volyQ_, is differentiable from
the left and from the right, respectively (at every point p>0), and the N-1)

+ go
dimensional Minkowski content of 0Q_, is equal to ~L( j“,—ntd—)-vol,\,ﬂ_‘,
2 \dp dp
(see [6]). Since any set 0€_, can be given as the Lipschitz continuous image
of some compact subset of RV-14), we obtain fiom a theorem of M. Kneser
(see e. g. [7]) that the voly_, measure of 0Q_, coincides with its Minkowski
content, i.e.

!

Hence it follows

(14)

. ; det [I+E UKU—I]

1 (d+ d-
15 voly_,0Q__= - —[Z—+"—}vol,Q__.
(15) N 00, 2(dpdp)Np
From (10) we obtain
h(x)
(16) voly_, Q.= [ [ lo_,-(F(x)—En(x)) Jac(F*(x, —£))dEdx.
RN—1 ¢

From the definition of the function # we have
Q o={F(x)—-En(x):p <&<h(x), p < h(x), x&RN-1Y,

) In fact. if @ denotes a C'—mapping from BN-! onto o BN, further if k (y) is the
outward normal of 0 at the point y€oQ. then the mapping T*:s+> T (s)—pk (T(s)) is a
C'—smooth mapping of dBN~-! onto some compact subset of RN which contains oQ_p.
Therefore. the set E = (T*.®)~1 (0 Q_p) is a compact subset of BN-1 and we have 0 Q_p=
=(T*s D) (E).
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Hence
lo_o (F(x)—Enr(x))= Lm0 (8)
whenever 0 < £ < h(x). Therefore (16) yields

max (h(x),p)

a7 volyQ_, = [ f Jac (F* (x,—£))dEd x.

RN—1

(17) immediately implies

quOlNQ_p - — f Jac (F*(x, —p))dx = — fJaC (F*(x, — o)) 1 o, non (p) dx,
e 1xERN =1 (x)>p) RN—1
(18)
d‘ N
2 volyQ_, - — f Jac(F* (x, —p)) dx = —fJac (F*x, —0)) Lio,n oy () dx.
de [xCRN—1:h (x)>0) RN—1

From (14) we have
(19) Jac (F* (x, - o))—det[—, n]l fl 1—pk;(x),
0x | i=1

for any fixed x& RN~ Recall that for the values of & we have the following
estimation

(20) 0<h ()<

ki (x)

for all indexes i such that k,(x)>0 (see [8, Theorem B] or [9]). To complete
the proof of Lemma 2, we prove separately the following general statement.

Lemma 3. Let P:R—~R be such a non-constant polynomial whose roots
are all real and P (0) >0, P’ (0) <0. Then P has at least one positive root and
it decreases in the interval between 0 and its least positive root.

Having established lemma, we conclude the proof of Lemma 2 as follows.

N—1
Consider the polynomial P p+—>ﬂ(l — ok, (x)) for fixed x < RN¥~!. From our

basic assumption on M1nkowsk1 curvature of 0Q we have
1) P’ (0)— — j k; (x)<0.
i=1

Therefore we may apply Lemma 3. Hence we see, by taking into consi-
deration (15) (18) (19) and (20), that the function gr>voly_ ,0Q_, is mono-
tone decreasing and

(22) hm volN L0 f Jac (F* (x,0))dx = voly_,0 Q.

RN—
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4. Proof of the Lemma 3. It is easy to see using Rolle’s the-
orem, that if all the roots of a polynomial Q:R— R are real and if Q(p)=

=a(e—E)"- - -(p—&)", where £ < ... <E and m,,...,m>0, then there
exist m;,..., m,_;, b such that & <, <., (=1,...,5—1) and Q (¢)=
be(p—Eymteeennn (e—=&)™ T (e—n) - - (p—n,_p)

Therefore the polynomial P has a positive root. In the contrary case our
assumptions P (0) >0, P’(0) <O imply that P’ has degree (P) — | negative
roots (with multiplicity). This is impossible because now we necessarily would

have lim P(p)=co, whence P’ would admit at least degree (P) roots (with
p—>00
multiplicity)).
Thus let £* denote the least the least positive root of P, and suppose P
is not decreasing on (0, £*). Now for some £ (0, £*) we must have P’ (5)>0.

But then the relations P(0) >0, P’ (0)<<O P’(*) <0 ensure the exis-
tence of at least two distinct roots of P> on the interval [0, £*). However, this
is impossible since from our beginning remark we can see that the closed inte-
rval between any two (not necessarily distinct) roots of P’ thus £* cannot be
the least among the positive roots of P.

The proof of Lemma 3. and hence also the proof the Theorem is com-
plete.

5. Added in proof. Under the hypothesis of the Theorem, we can
prove by the same method the estimate

(23) R,-(Q)<(jv~~;-)n, G-1,2...; QEK)

where

vol, Q

R (Q)=A;(Q ——F—.
voly_,0Q

It is an open question what are the exact values of ¢;(K)=sup R;(Q)
QekK

for j#1. Although the estimate (23) does not seem to be exact, it shows, that
supR;(Q) < o(j=1, 2,...), which is not trivial apriori.
QcK

It is worth to remark, that the order behaviour from above of the quan-

tities  {A; (Q)};Z; for an arbitarily fixed domain Q is exactly clarified by the
following famous theorem of V. A. I'in [12): Given any domain Q in RV
there exist a constant C () depending only on  such that for each orthono-
rmal system {u;} C L?(€Q) formed by the cigenfunctions of the Laplacian with
respective eigenvalues {A;}7, the estimate

2

SN,
0<AK<CE)j7(J=1,2,..)

holds. This estimate cannot be improved.
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