DEFECT AND RADICALS OF Δ-ENDOMORPHISM NEAR-RINGS

Vučić Dašić

(Received October 9, 1980)

In this note we consider some properties of the defect of Δ -endomorphism near-rings. It is shown that, if for all $f \in \operatorname{End}_{\Delta}(G)$ the restriction of f to Δ is an endomorphism of the subgroup $(\Delta, +)$, then $\mathfrak{D}^2 = \{0\}$. Let G be a finite direct sum of minimal E_{Δ} -invariant subgroups B_i ($i \in I$) and $\Delta \subseteq B_i$ for some $i \in I$. We show, if every $f \in \operatorname{End}_{\Delta}(G)$ is of the form $f = t + \delta$ ($t \in \operatorname{End}(G)$, $\delta \in \mathfrak{D}$), where the restriction of f to Δ is an endomorphism of the subgroup $(\Delta, +)$, then the radicals J_2, J_1, J_0 and nil radical η of the near-ring $E_{\Delta}(G)$ are equal to the defect \mathfrak{D} . This generalizes a results of M. Johnson ([3], Prop. 3).

Let $M_0(G)$ be a set of all zero preserving mappings of the group (G, +) into itself and let Δ be a fully invariant subgroup of G. The mapping $f \in M_0(G)$ with $(\Delta)f \subseteq \Delta$ is called Δ -endomorphism of the group (G, +) if for all $x, y \in G$ there exists $d \in \Delta$ such that

$$(x+y)f = (x)f + (y)f + d.$$

If $\Delta = \{0\}$, then Δ -endomorphism f becomes an endomorphism of (G, +).

Denote by $\operatorname{End}_{\Delta}(G)$ the multiplicative semigroup of all Δ -endomorphisms of (G,+) for which every fully invariant subgroup of (G,+) is invariant. We say that these subgroups are E_{Δ} -invariant. Let $E_{\Delta}(G)$ be the near-ring whose additive group is generated by $\operatorname{End}_{\Delta}(G)$. The normal subgroup $\mathfrak D$ of the group $(E_{\Delta}(G),+)$ generated by the set

$$\{\delta: \delta = -(ht+ft) + (h+f)t, h, f \in E_{\Delta}(G), t \in \operatorname{End}_{\Delta}(G)\}$$

is a defect of distributivity of the near-ring $E_{\Delta}(G)$. It is shown in [2] that the defect of every near-ring R is an ideal of R. The defect \mathcal{D} depends upon the choice of the normal subgroup Δ . It is clear that $\mathcal{D}\subseteq (G,\Delta)_0$, where $(G,\Delta)_0$ is the set of all zero preserving mappings $f:G\to\Delta$.

Let G be a group and $B \subseteq G$. We define the right annihilator of B by $A(B) = \{ f \in E_{\Delta}(G) : (b) f = 0, \text{ for all } b \in B \}$. If B is any E_{Δ} -invariant subgroup of (G, +), then A(B) is an ideal of $E_{\Delta}(G)$, that is, an annihilator ideal. The radical $J_2(E_{\Delta}(G))$ of $E_{\Delta}(G)$ is the intersection of all annihilating ideals of the minimal E_{Δ} -invariant subgroups. The nil radical $\eta(E_{\Delta}(G))$ of $E_{\Delta}(G)$ is the sum of all nil ideals of $E_{\Delta}(G)$. For definitions of the radicals J_1 and J_0 see [4].

Theorem 1. Let Δ be a fully invariant subgroup of the group (G, +). If for all $t \in End_{\Delta}(G)$ the restrction of t to Δ is an endomorphism of $(\Delta +)$, then $\mathfrak{D}^2 = \{0\}$.

Proof. If $\delta \in \mathcal{D}$ and $x \in G$, then $(x) \delta = d_1 \in \Delta$. For all δ , $\delta' \in \mathcal{D}$ and $x \in G$, where $\delta' = \sum_i (f_i + \theta_i - f_i)$ and $\theta_i = -(h_i t_i + g_i t_i) + (h_i + g_i) t_i$ $(h_i, g_i \in E_{\Delta}(G), t_i \in \operatorname{End}_{\Delta}(G))$, we have

$$(x) \delta \delta' = (d_1) \delta' = (d_1) \sum_i (f_i + \theta_i - f_i).$$

But, $(d_1) \theta_i = 0$, because the restriction of t_i to Δ is an endomorphism of $(\Delta, +)$. Thus, $(x) \delta \delta' = 0$, i. e. $\mathcal{D}^2 = \{0\}$.

Proposition 2. Let Δ be a fully invariant subgroup of the group (G,+). If for all $t \in End_{\Delta}(G)$ the restriction of t to Δ is an endomorphism of $(\Delta,+)$ then $E_{\Delta}(G)/\eta$ $(E_{\Delta}(G))$ is a distributively generated near-ring.

Proof. Using Theorem 1 it follows that the defect $\mathfrak D$ is nilpotent. The nil radical of the near-ring R contains all the nilpotent ideals of R ([4], 5.66 Summary). Hence $\mathfrak D\subseteq \eta(E_\Delta(G))$ and by Corollary of the Theorem 2.6 of [2] it follows that $E_\Delta(G)/\eta(E_\Delta(G))$ is a distributively generated near-ring.

Theorem 3. Let G be a direct sum of a non-empty collection of minimal E_{Δ} -invariant subgroups B_i ($i \in B_i$) and $\Delta \subseteq B_i$ for some $i \in I$. If for all $t \in End_{\Delta}(G)$ the restriction of t to Δ is an endomorphism of the subgroup $(\Delta, +)$, then $\gamma(E_{\Delta}(G)) = \{0\}$, if and only if $\Delta = \{0\}$.

Proof. If $\eta(E_{\Delta}(G)) = \{0\}$, then by Theorem 1 it follows that $\Im \subseteq \eta(E_{\Delta}(G))$ i.e. $\Im = \{0\}$. Hence $\Delta = \{0\}$, for if $\Delta \neq \{0\}$, then it must be that $\Im \neq \{0\}$. Namely, the mapping $f \in (G, \Delta)_0$ with

$$(x)f = \begin{cases} 0, & \text{if } x \in G \setminus \Delta \\ x, & \text{if } x \in \Delta \end{cases}$$

is a nonzero Δ -endomorphism, but is not an endomorphism of the group (G, +) Conversely, if $\Delta = \{0\}$, then $E_{\Delta}(G) = E(G)$. Hence, by Proposition 3 of [3], it follows that $\eta(E_{\Delta}(G)) = \{0\}$ and the theorem is proved.

If Δ is a fully inveriant subgroup of (G, +), then the mapping $f \in M_0(G)$ of the form $f = t + \delta$, $(t \in End(G), \delta \in \mathcal{D})$ is a Δ -endomorphism of (G, +). Indeed, $(\Delta)f \subseteq \Delta$ because Δ is a fully invariant subgroup of (G, +). Also, for all $x, y \in G$ there exists $d' \in \Delta$ such that

$$(x+y)f = (x+y)(t+\delta) = (x+y)t + (x+y)\delta = (x)t + (y)t + d'$$

where $(x+y)\delta = d' \in \Delta$. Since $\mathfrak{D}\subseteq (G, \Delta)_0$, we have

$$(x+y)(t+\delta) = (x)(t+\delta) - (x)\delta + (y)(t+\delta) - (y)\delta + d'$$

$$(x+y)(t+\delta) = (x)(t+\delta) + (y)(t+\delta) + d, \quad (d \in \Delta),$$

i.e. the mapping $f=t+\delta$ is a Δ -endomorphism.

Theorem 4. Let G be a finite direct sum of a non-empty collection of minimal E_{Δ} -invariant subgroups B_i ($i \in I$) and $\Delta \subseteq B_i$ for some $i \in I$. If every $f \in End_{\Delta}(G)$ is of the form $f = t + \delta$ ($t \in End(G)$, $\delta \in \mathfrak{D}$) and the restriction of f to Δ is an endomorphism of the subgroup $(\Delta, +)$, then the radicals J_2 , J_1 , J_0 and η are equal to the defect \mathfrak{D} of the near-ring $E_{\Delta}(G)$.

Proof. We first prove that $J_2(E_{\Delta}(G)) = \mathfrak{D}$. By Theorem 1 it follows that $\mathfrak{D}\subseteq \eta(E_{\Delta}(G))$, i.e. $\mathfrak{D}\subseteq J_2(E_{\Delta}(G))$. If $f\in J_2(E_{\Delta}(G))$, where $f=t+\delta$, $(t\in End(G), \delta\in\mathfrak{D})$, then $t\in J_2(E_{\Delta}(G))$, i.e. $t\in \bigcap_i A(B_i)$, because $\delta\in J_2(E_{\Delta}(G))$. For all $x\in G$,

where $x = b_1 + \cdots + b_n$, $(b_i \in B_i, i = 1, \dots, n)$, we have

$$(x) f = (b_1 + \dots + b_n) (t + \delta)$$

$$(x) f = (b_1) t + \dots + (b_n) t + (b_1 + \dots + b_n) \delta$$

$$(x) f = (b_1 + \dots + b_n) \delta$$

because $t \in \bigcap A(B_i)$. Thus, $(x)f = (x)\delta$, i.e. $J_2(E_{\Delta}(G)) \subseteq \Im$. Hence, $J_2(E_{\Delta}(G)) = \Im$.

Since the defect \mathfrak{D} , by Theorem 1, is nilpotent, it follows that the radical $J_2(E_{\Delta}(G))$ is nilpotent too. By using the fact that the above mentioned radicals contain all nilpotent ideals ([4], 5.66 Summary) we obtain

$$J_2(E_{\Delta}(G)) = J_1(E_{\Delta}(G)) = J_0(E_{\Delta}(G)) = \eta(E_{\Delta}(G)) = \Im.$$

The previous theorem generalizes a result of M. Johnson ([3], Prop. 3). Namely, if $\Delta = \{0\}$, then all these radicals coincide with the zero ideal.

Theorem 5. Let Δ be a minimal fully invariant subgroup of the finite group (G,+). If the interesection of all nilpotent $E_{\Delta}(G)$ -subgroups contains the defect \mathfrak{D} , then

$$J_{2}(E_{\Delta}(G)) = J_{1}(E_{\Delta}(G)) = J_{0}(E_{\Delta}(G)) = \eta(E_{\Delta}(D)).$$

Proof. Let \mathcal{N} be a nilpotent $E_{\Delta}(G)$ -subgroup. By assumption $\mathcal{D}\subseteq \mathcal{N}$. Since the near-ring $E_{\Delta}(G)$ has the identity, the right ideal W generated by \mathcal{N} has the elements of the form ([1], Prop. 1.2)

$$w = \sum_{i} (f_i \pm h_i n_i - f_i), \quad (f_i, h_i \in E_{\Delta}(G), n_i \in \mathcal{N}).$$

It was proved (see [1], Prop. 3.10) that W is a nil ideal. Thus, $\mathcal{N} \subseteq \eta(E_{\Delta}G)$. By using the Corollary of Theorem 2.6 of [2] it follows that $E_{\Delta}(G)/\eta(E_{\Delta}(G))$ is a distributively generated near-ring which contains no nonzero nilptotent $E_{\Delta}(G)$ -subgroups. The remaining part of the proof is similar to the proof of Theorem 3.11 in [1].

The previous theorem generalizes a result of M. Johnson ([3], T16).

REFERENCES

[1] Dašić, V.: Δ -endomorphism near-rings, Publ. Inst. Math., (Beograd), 28 (42) (1980), 61—75.

[2] Dašić, V.: The defect of distributivity of the near-rings, Math. Balkanica, (to appear).
[3] Johnson, M.: Radicals of endomorphism near-rings, Rocky Mountain J. Math., 3 (1973), 1—7.

[4] Pilz, G.: Near-rings, North-Holland, Amsterdam, 1977.

Matematički Institut Titogradski univerzitet 81000 Titograd Yugoslavia