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A LINK BETWEEN ORDERED SETS AND TREES
ON THE RECTANGLE TREE HYPOTHESIS

DPuro Kurepa

0. Summary. Certainly the simplest ordered chains and ordered sets are
well-ordered sets and trees, respectively.

0:1. We had the opportunity to link these two kinds of ordered sets in
particular by associating to every ordered set (E, <) a tree, labelled
0:2) w(E, <)
and consisting of all well-ordered subsets of (E, <) and ordered by the relation
<. where
(0:3) a<-b < ais an initial part of b; in particular, the empty set v is- the
first member of (w(E, <), <)
‘ 0:4. The tree (w(E, <), <-) has interesting properties. In particular, for
any ordered chain (L, <), the tree w(L, <) reflects some global properties of
the chain (L, <), expressed by the following

0:5. Theorem. For any infinite totally ordered set (L, <) the equality
(this is a global property of (L, <))

0:6) d(L, <)V =cel(L, <): =c?
holds if and only if every tree TCw(L, <) of cardinality ¢* satisfies
©:7 kT=bT® (kX denotes the cardinality of X).

The proof of 0:5 Theorem will be given in section 1.

0:8. We were interested in the problem whether there is a strictly incre-

asing mapping of the tree
o (E, <)Y into (E, <),

) d(L, <): =infkX, XCL, X=(L, <), i. e. X is everywhere dense in (L, <).
) (L, <)=cel(L, <): =supgkF, F being any disjoint family of non empty intervals
of the chain (L, <). )

3) For any ordered set (E, <) we set b (E, <):=sup kD, D being a degenerated subset
of (E, <), i.e. one in which the comparability relation is transtive. One sees that D is chara-
cterized by the property: to be the umion of pairwise incomparable chains, i. e., such that each
member of any chain is incomparable to each member of another chain.

49 o (E, <) is the system of all members of w(E, <) each bounded in (E, <); it matters
that the empty set is a member of o (E, <) — the first member of the trees w (E, <), o(E, =)
with respect to the order relation <-.
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(E, <) being any given ordered set. The answer is that for no (E, <) there
should be a strictly increasing mapping of o(E, <) into (E, <) (cf. D. Kurepa
[1964:6] 1.1 Theorem).

0:9. In section 2 we shall prove some statements concerning our tree
rectangle hypothesis. In section 3 we shall prove the main theorems of the
present paper.

1. Proof of the 0:5 Theorem. 1:1. (necessity).

In the opposite case there would be a chain (L, <) having an infinite
¢L and a tree T wL such that

511, ’ kT>bT.

Then, necessarily, the number kT would be isolated, say N,,; and the
levels of T would be <(W, each. Oa the other hand, the assumed hypothesis 0: 6
implies that there exists a subset B of distinct points

bys Bys vvvs Byyonn (M<<tay)
such that B is everywhere dense in (L, <) and kB=c; thus
1:1:2. B=L, kB=c.

For every ecwL and every xEe, let te(-, x) denote the order-type of
the set e(-, x) of all members of e, ecach <ux.

1:1:3. Lemma. If e, e'&Ewl, xCene' and te(-, x)#te' (-, x), then
elle, i.e. neither e<-¢' nor e'<-e.

Proof. Let e: =(e)rcr, € =(€n)wer, and e,,=x‘=e:,/; then n=te(., x),
n' =te' (-, x); by assumption, n=£n', thus n<n' or n>n'. If n<n’, then e¢,=x,
en< ey=2x; thus e,#e, and therefore elje’. In a similar way, if » <n, then
elle. :

1:1:4. The assumption 1:1:1 yields that y T=e,,,; and that each level
R, T of T is <e.

1:1:5. For every x&e T let tT(+,x): =sup,te (-, x): =g (x) (xSeCT);
then

1:1:6 g(xX) <y, :=v.

Proof. In the opposite case there would be an x& L such that g(x)>v.
By transfinite induction one should establish a v-sequence e” (n<<v) of members
of wL such that the v-sequence fe”(-, x) (n<v) would be strictly increasing;
by .1:1:3 this would imply that the v-sequence e” (n<v) would yield an anti-
chain of cardinality kv=wy,,,=c*, which contradicts the assumption 1:1:1.

1:1:7. The assumption 1:1:2 and the 1:1:5 Lemma for an everywhere
dense subset B of (L, <{) such that kB=c yield that the number

1:1:8  B: =sup, (T, b) (bEB) satisfies B<v (v. 1:1:5).
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1:1:9. Let w, (n<<v) be a well-order of all well-ordered 3-point segments
(€s.3, €x-3+1, €5.3+2) of ecT such that te(-, e,.3)>f; the latter relation implies
that »
BNw,=v,

The set B being everywhere dense in (L, <) there exists a point d"&B
located between the first point and the last point of w,. Let T be the tree
obtained from T just by the latter procedure of inserting a member of B bet-
ween extremal members of every w,. IT” is a well defined part of w(L, <).
Since kT’ =c¢* and since suppep?(Z’, b)=v and kB=c, we infer that there
eXists a point b& B such that

t(T',b)y=v (v. 1:1:6).

By the 1:1:3 Lemma we conclude that there exists a subset A’ of T”
composed of pairwise incomparable elements and that k4’ =c™. In other words,
if x,yE A’ are distinct, then x||y. Now, for every z’&T’ let z be the element
of T obtained from z’ by deleting every member x of z’ of a rark >f such
that x&B; obviously, z&T. Moreover, if o', z’ are distinct members of A’,
then u||z (in the opposite case, if e.g. #<z, then one would have v'<-z' in
A" — absurdity, because 4’ is an antichain). Consequently, the set 4. ={z"..
z&A'} would be an antichain in T such that k4=c* which contradicts the
assumption 1;1:1. This contradiction ends the proof of the first part of the
0:5 Theorem.

1:2. Proof of the second part of 0.5 (sufficiency). 1:2:1. In the oppo-
site case, one should have 0:;7 and ]0:6 i.e. one should have an infinite
chain L such that dL=c*+.)

Now, let us consider a complete bipartition — atomization D of L; his
would be a decreasing tree of height w(y+, of intervals of L; for any chain
CCD let 1C be the well-ordered subset of left end points of intervals —
elements of C; then 1 CEwL and so we have a mapping

CCD-> 1C&wL (C being a chain in (D, D)).

Let (1:2:2)p=inf 1C for some chain CCD; then the number of solutions for
C in (1:2:2) is <c (in the opposite case one would have an inversely well-
-ordered set of points sup C of cardinality >c¢ — absurdity).

1:2:3. Let 1D: ={1C..CCD, C being the chain}.

Then, in virtue of (1:2:2) 1 D would be a subiree of wL and k1D=kD=c".
So the trec 1D would satisfy, by assumption, the relation (0:7), i.e. k1D =0b1D.
Since the number b1D is vegular, there would be a chain or an antichain of
1D of cardinality #1D. The first case being obviously impossible, we infer that
there would be an antichain 4 of 1 D such that k4A=c*. For any a= A let
1(@)&CE&D such that inf I(gy=a; I(a) is a subdivision interval of L in the
atomization D of (L, <); for distinct members a, @' of A the intervals I(a),
I(a’) would be disjoint; in other words the A-un of intervals I(a) (a&4)
would be a disjointed system of cardinality k4=c* of non -empty intervals
of L —. absurdity, because cel L=c<<c*. Q.E.D.

1) For any infinite chain (L, <) we have dLE{cL, (cL)*} (v. Kurepa [1935:2,3] p. 121..
Theorem 2). : : v :
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2. On the rectangle hypothesis for trees.

2:1. For a graph (G, R) we define the global Width of (G, R) as the number
2:1:1 ko (G, R): =sup kA, A being any antichain of graph, i.e. 4 is
any subsystem of G containing no two distinct comparable members.

2:2. The global length of (G, R) is the number
2:2:1. k. (G, R): =sup kL,
L being any subset of G such that any 2 members of L are comparable.
2:3. The rectangle hypothesis or the chain x antichain hypothesis for a graph
(G, R) reads: ‘
(2:4) k(G, A<k, (G, R)-ke (G, R) (cf. Kurepa D. [1963:3] nos 3:3, 4:3:3,
4:3:4 and [1964:7]). In the general case, the statement (2:4) is false.
2:5. The most interesting case is the corresponding statement for trees
T, <
2:6) kT<k (T, <) ko (T, <) (tree rectangle hypothesis).
k 2:7. Theorem. The tree rectangle hypothesis [TRH] is an undecidable
statement (conjectured in Kurepa [1935]; v. also Kurepa [1964:7], [1977:5, 6];

model for JTRH: in Solovay — Tennenbaum [1973]; model for TRH: indepen-
dently in Jech [1967], Tennenbaum [1968]).

2:7:1. Theorem. The TRH for trees of cardinality ¥, is equivalent to
the positive answer to the Suslin problem (Kurepa [1935] p. 106 case b), p. 124
(last. passage), p. 132 (P, & Py).

2:8. Theorem. The TRH is equivalent to the statement that for every
infinite tree T one has

2:9 kT =bT.

Proof Necessity: 2:6 = 2:9. As a matter of fact, for every infi-
nite tree T we have obviously k,T-k.. T=>5bT; the 1elation 2:6 implies kT<bT,
thus kT=bT, i.e. 2.9, because obviously kT>bT.

Sufficiency: 2:9 = 2:6. Now, this implication is implied by 2:9
and the obvious fact that bT<<k T k. T.

2:10. Theorem. The TRH is equivalent to the statement that for every
infinite totally ordered set (L, <)

2:10:1 , TCw(L, <)&kT=¥N, = kT=5bT.

Proof. 2:10:2. The = part of 2:10 being obvious, let us prove the
<& part.

2:10:3. Now, in virtue of the 0:5 Theorem the equality AT=>bT for
every infinite TCwL implies 0:6.

2:10:4. Since for every infinite tree T one has kT=bT or kT=(bT)*
(P. Kurepa [1935:2, 3] p. 105 Th. 1), we have to prove that the implication
2:10:1 implies kT =bT and also TRH.
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2:10:5. Let us assume the contrary, i.e. that for some ordinal there
exists a tree T, such that

2:10:6 N, =bT, kT,=%,.,.

2:10:7. Then necessarily the height or the rank v T of T equals o,,;
and every row R, T, has <k, points. One proves that T, contains a subtree
T of cardinality N,., such that for every x&T the set T[x] of all points of
T comparable to x has the rank ©,,, and that x has in T infinitely many
next followers and that every chain as well as every antichain of T is <¥,
(cf. D. Kurepa [1935:2, 3] p. 109, Th. 2). ’

2:10:8. Let o/ be the system of all nodes of (T, <)V; for every node
N of (T, <) let (N, <) be a total order of </f such that N has neither a
first nor a last member. The orderings (7, <), (N, <p) (V&) yield a total
order (7, <) of T in the following way:

for x,yET let x< y mean that either x<{y or that x/l<y and x'<yJ/,
where N is the node contained in a row R,T of minimal index o such that N
contains a member x'<x and a member y' <y such that x'#)’ (cf. the notion
of natural order extension of (7, <) in B. Kurepa [1935:2, 3], Ne 2, p. 87).

2:10:9. Let (L, <) be a Dedekind completion of (7, <). Then obviously
2:10:10. cel (L, K)=c(T, <)=¥N,.

2:10:11. Let 9 be a total bipartion of (L, <) and E the system of
all non singleton intervals occuring in this atomization 9 of (L, <), (cf D.
Kurepa [1935:2, 3] p. 83 Ne 3, p. 114). One sces easily that the rank yE of
the system (E, D) is w,,, and that every row of E is <, and that kE=N, .

2+:10:12. Let us consider the system B: ={E(-,x], x&E}.Every ycE(-, x]
is an interval of L; the end points of y are inf y, sup y and they are distinct.

2:10:13. For every a<E let ia: ={infy. .yDa, ycE}; then ia is a well-
-ordered subset of (L, <); inf a is the last member of ia.

2:10:14. For any given aCE the relations ix=ia, xCE have <N,
solutions,

As a matter of fact, all these solutions constitute a strictly decreasing
well-ordered family of intervals of (L, <) having all just inf g as its common
end point. ’

2:10:15. If @, PEE and neither ia<<-ib nor ib<C-ia, then the intervals
a and b of (L, <) do not overlap, i.e. the sets int a and int b are disjoint.

As a matter of fact, if the intervals a and b overlapped, then one would
bave aCh or bCa, and consequently E(-, al CE(+, b] or E(-, bJCE(-, a], and
further ia<-ib or ib<-ia, respectively, contradicting the starting assumption.

2:10:16. Let Wi ={ix. . x€E}. Then
2:10:17. WCw(L, <), fW=kE=8,,,-

1) A node of a tree T is every maximal subset X of T such that all members of X
have same predecessors in T. .
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At first, E= Ui"'{z} (z&W); since by 2:10:14 one has ki~'{z}<N,
for every zEW, one has kKE<kW-§,; this relation jointly with kE=¥,,, in
2:10:11 implies the requested equality in 2:10:17.

2:10:18. In virtue of the relations 2:10:17 the assumed implication
2:10:1 would yield (put W instead of T)the equality kW =0W, i.e. bW =VN,,,.
Since the number ¥, ., is regular, there would be a degenerated subset XCW
such that kX=N,,,.

2:10:19. X being degenerated the sets X[a, +) are chains in (w(L, <),
<-); therefore each of them is<(N,; since X=UX[a,-) (aE R, X=the first row
of X) one concludes that kAR, X =¥,.,. Consequently, the set R X: =4 would
be an antichain of W of cardinality §,.,.

If for every x&W one denotes by x' a member of E such that ix’ =a,
then in virtue of 2:10:15 the system {x', x=W} would be a set of cardinality
N,.; of non overlapping intervals of the chain (L, <), in contradiction with
2:10:11. This contraction ends the proof of 2:10 Theorem <.

2:11. Theorem. The tree rectangle hypothesis TRH implies 0.6 for
every chain (L, <).

Proof. In the opposite case there would be an infinite chain (L, <)
such that d: =d(L, <)=c*, where ¢: =ce'(L, <)=kw, Let 9 and E have
the same meaning as in 2:10:11. Every subchain of (E, D) should be <,
therefore vy D=w,,,. Now, one has not y D<o, because the set M of all
end points of members of E should be of power N,; since M is everywhere.
dence in (L, <), one would have d(L, <)<{N,=c, contradicting the assump-
tion d=c*.

: Again ¥y D=w0,,, does not hold either, because according to the TRH
one has k DLk (D) 7 (D)= N, (because k, (D)<N, kc, (D)< N,) contradicting
the relations v D=w0,,,, k [)>kYCD xaﬂ E.D

As a synthesis of theorems 0:5, 2:8 and some of our previous results

we have the following

3:1. Main theorem. The following statements are pairwise equivalent:

T4 (Tree alternative). For every ordinal o any tree of power W, ., is
equinumerous to a subchain or to a subantichain (cf. D. Kurepa
[1935:2, 3], p.109 Th. 2).

TRH Tree rectangle hypothesis (or tree chain x antichain hypothesis): Every
tree T satisfies kT<k,T-k,T.

k=">) For every infinite tree T one has kT=D>bT.

(k,, =s) Every infinite tree T satisfies k,T=sTV (v. 3.3 Th. in D. Kurepa
[1963 : 3]). ;

) For every infinite chain (L, <) every tree TC(w(L, <) ) of car-
dinality (cel(L, <))* satisfies kT=D>bT.

(d=c) Every totally ordered infinite set (L, <) satisfies 0:6.

D The star number. of a graph (G, R) is defined as. sG: =inf kF, F running through the
system of all families of chains of (G, R) such that UF=G (v. D. Kurepa, [1963:3]. Ne 1.1);
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(s) For every family F of sets one has
kF=k, Fk, F-s,F,
where F denotes the graph (F, v), xNy: =xMy=v;
s, F:=sup,sF(-, x], F(-,x]: ={y..yDx, yEF}.
(cf. D. Kurepa [1963:3] p. 34 Th. 4.3.4).

Proof. The equivalence of the statements T4, TRH, k=5F is obvious
(cf. also 2:11 Th). Further, TRH & ky=s (v. 3.3 Th. p. 30 in D. Kurepa
[1963:3}; TRH < (s) (v. 4.3.4 Th. p. 34 in D. Kurepa [1963:3]); (k=b) &
(w) (v. 2:10 Th); (w) & (d=c¢) (s. 0:5 Th). Each of the statements: T4, TRH,
k=b, ky=s, (W), (d=c), (s;) having been involved at least once in an equi-
valence, the proof of the Main Therrem is finished.

3:2. Another version of the Main Theorem. In the wording of the 3:1
Theorem it is legitimate to replace everywhere the word tree by the word pseudo-tree.

4. Denotations]

kX =the cardinal number of X; if n is a cardinal then kn: =n.

A pseudotree or ramified set is any ordered set (E, <) in which no member
x has two incomparable ancestors a, b<<x; in other words, for every x&E the
set E(+, x): ={y..y<x,yEE} is a chain (v. D. Kurepa [1935:2, 3] pp. 69, 127).

S-un (S being any set or any class): =any procedure f by which to every
member x of S corresponds an object fx(fx may be a number, point, set,
structure, ...); in particular, 2-un:=ordered pair, 3-un: =ordered triplet,
rn-un (for any number #): = ordered n-tuple =n-sequence. One says: fis an S-un.

1 (X, <)=order-type (X, <).

v=the vacuous or the empty set.

w, (n being a given set or cardinal number) is the first ordinal number
of cardinality kn.

*. means ,,such that®.
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