A LINK BETWEEN ORDERED SETS AND TREES ON THE RECTANGLE TREE HYPOTHESIS

Đuro Kurepa

- 0. Summary. Certainly the simplest ordered chains and ordered sets are well-ordered sets and trees, respectively.
- 0:1. We had the opportunity to link these two kinds of ordered sets in particular by associating to every ordered set (E, \leq) a tree, labelled

$$(0:2) w(E, \leqslant)$$

and consisting of all well-ordered subsets of (E, \leqslant) and ordered by the relation $\leqslant\cdot$ where

- (0:3) $a \leqslant b \Leftrightarrow a$ is an initial part of b; in particular, the empty set v is the first member of $(w(E, \leqslant), \leqslant \cdot)$.
- **0:4.** The tree $(w(E, \leq), \leq)$ has interesting properties. In particular, for any ordered chain (L, \leq) , the tree $w(L, \leq)$ reflects some global properties of the chain (L, \leq) , expressed by the following
- 0:5. Theorem. For any infinite totally ordered set (L, \leq) the equality (this is a global property of (L, \leq))

(0:6)
$$d(L, \leq)^{(1)} = \operatorname{cel}(L, \leq) := c^{(2)}$$

holds if and only if every tree $T \subset w(L, \leqslant)$ of cardinality c^+ satisfies

(0:7)
$$kT = bT^{3}$$
 (kX denotes the cardinality of X).

The proof of 0:5 Theorem will be given in section 1.

0:8. We were interested in the problem whether there is a strictly increasing mapping of the tree $\sigma(E, \leq)^{4}$ into (E, \leq) ,

1) $d(L, \leq)$: = inf kX, $X \subset L$, $\overline{X} = (L, \leq)$, i. e. X is everywhere dense in (L, \leq) .

²⁾ $c(L, \leq) = \text{cel}(L, \leq) := \sup_F kF$, F being any disjoint family of non empty intervals of the chain (L, \leq) .

³⁾ For any ordered set (E, \leqslant) we set $b(E, \leqslant)$: = sup kD, D being a degenerated subset of (E, \leqslant) , i.e. one in which the comparability relation is transtive. One sees that D is characterized by the property: to be the union of pairwise incomparable chains, i. e., such that each member of any chain is incomparable to each member of another chain.

⁴⁾ $\sigma(E, \leqslant)$ is the system of all members of $w(E, \leqslant)$ each bounded in (E, \leqslant) ; it matters that the empty set is a member of $\sigma(E, \leqslant)$ — the first member of the trees $w(E, \leqslant)$, $\sigma(E, =)$ with respect to the order relation $\leqslant \cdot$.

- (E, \leqslant) being any given ordered set. The answer is that for no (E, \leqslant) there should be a strictly increasing mapping of $\sigma(E, \leqslant)$ into (E, \leqslant) (cf. D. Kurepa [1964; 6] 1.1 Theorem).
- 0:9. In section 2 we shall prove some statements concerning our tree rectangle hypothesis. In section 3 we shall prove the main theorems of the present paper.

1. Proof of the 0:5 Theorem. 1:1. (necessity).

In the opposite case there would be a chain (L, \leqslant) having an infinite cL and a tree $T \subset wL$ such that

1:1:1.
$$kT > bT$$
.

Then, necessarily, the number kT would be isolated, say \aleph_{n+1} and the levels of T would be $\leqslant \aleph_n$ each. On the other hand, the assumed hypothesis 0:6 implies that there exists a subset B of distinct points

$$b_0, b_1, \ldots, b_m, \ldots (m < \omega_{(c)})$$

such that B is everywhere dense in (L, \leq) and kB = c; thus

1:1:2.
$$\overline{B} = L$$
, $kB = c$.

For every $e \in wL$ and every $x \in e$, let $te(\cdot, x)$ denote the order-type of the set $e(\cdot, x)$ of all members of e, each < x.

1:1:3. Lemma. If $e, e' \in wL$, $x \in e \cap e'$ and $te(\cdot, x) \neq te'(\cdot, x)$, then $e \parallel e'$, i.e. neither $e \leqslant \cdot e'$ nor $e' \leqslant \cdot e$.

Proof. Let $e:=(e_n)_{n< t}$, $e'=(e_{n'})_{n'< t'}$, and $e_n=x=e'_{n'}$; then $n=te(\cdot,x)$, $n'=te'(\cdot,x)$; by assumption, $n\neq n'$, thus n< n' or n>n'. If n< n', then $e_n=x$, $e_n< e'_{n'}=x$; thus $e_n\neq e'_n$ and therefore $e\parallel e'$. In a similar way, if n'< n, then $e\parallel e'$.

- 1:1:4. The assumption 1:1:1 yields that $\gamma T = \omega_{(c)+1}$ and that each level $R_{\alpha}T$ of T is $\leq c$.
- 1:1:5. For every $x \in e \in T$ let $tT(\cdot, x) := \sup_e te(\cdot, x) := g(x)$ $(x \in e \in T)$; then

1:1:6
$$g(x) < \omega_{(c)+1} := v$$
.

- Proof. In the opposite case there would be an $x \in L$ such that $g(x) \ge v$. By transfinite induction one should establish a v-sequence e^n (n < v) of members of wL such that the v-sequence $te^n(\cdot, x)$ (n < v) would be strictly increasing; by 1:1:3 this would imply that the v-sequence e^n (n < v) would yield an antichain of cardinality $kv = \omega_{(c)+1} = c^+$, which contradicts the assumption 1:1:1.
- 1:1:7. The assumption 1:1:2 and the 1:1:5 Lemma for an everywhere dense subset B of (L, \leq) such that kB=c yield that the number

1:1:8
$$\beta$$
: = sup_b $t(T, b)$ ($b \in B$) satisfies $\beta < v$ (v. 1:1:5).

1:1:9. Let w_n (n < v) be a well-order of all well-ordered 3-point segments $(e_{\alpha \cdot 3}, e_{\alpha \cdot 3+1}, e_{\alpha \cdot 3+2})$ of $e \in T$ such that $te(\cdot, e_{\alpha \cdot 3}) > \beta$; the latter relation implies that

$$B \cap w_n = v$$
.

The set B being everywhere dense in (L, \leqslant) there exists a point $b^n \in B$ located between the first point and the last point of w_n . Let T' be the tree obtained from T just by the latter procedure of inserting a member of B between extremal members of every w_n . T' is a well defined part of $w(L, \leqslant)$. Since $kT' = c^+$ and since $\sup_{b \in B} t(T', b) = v$ and kB = c, we infer that there exists a point $b \in B$ such that

$$t(T', b) = v$$
 (v. 1:1:6).

By the 1:1:3 Lemma we conclude that there exists a subset A' of T' composed of pairwise incomparable elements and that $kA' = c^+$. In other words, if $x, y \in A'$ are distinct, then x || y. Now, for every $z' \in T'$ let z be the element of T obtained from z' by deleting every member x of z' of a rank $>\beta$ such that $x \in B$; obviously, $z \in T$. Moreover, if u', z' are distinct members of A', then u || z (in the opposite case, if e.g. u < z, then one would have u' < z' in A'— absurdity, because A' is an antichain). Consequently, the set $A := \{z' : z \in A'\}$ would be an antichain in T such that $kA = c^+$ which c intradicts the assumption 1:1:1. This contradiction ends the proof of the first part of the 0:5 Theorem.

1:2. Proof of the second part of 0:5 (sufficiency). 1:2:1. In the opposite case, one should have 0:7 and $\boxed{0:6}$ i.e. one should have an infinite chain L such that $dL = c^{+}$.

Now, let us consider a complete bipartition — atomization D of L; 'his would be a decreasing tree of height $\omega_{(c)+1}$ of intervals of L; for any chain $C \subset D$ let 1 C be the well-ordered subset of left end points of intervals — elements of C; then $1 C \subset wL$ and so we have a mapping

$$C \subset D \to 1$$
 $C \in wL$ (C being a chain in (D, \supset)).

Let (1:2:2) p = inf 1 C for some chain $C \subset D$; then the number of solutions for C in (1:2:2) is $\leq c$ (in the opposite case one would have an inversely well-ordered set of points sup C of cardinality > c — absurdity).

1:2:3. Let
$$1D := \{1 C : C \subset D, C \text{ being the chain}\}$$
.

Then, in virtue of (1:2:2) 1 D would be a subtree of wL and $k1D=kD=c^+$. So the tree 1D would satisfy, by assumption, the relation (0:7), i.e. k1D=b1D. Since the number b1D is regular, there would be a chain or an antichain of 1D of cardinality b1D. The first case being obviously impossible, we infer that there would be an antichain A of 1D such that $kA=c^+$. For any $a \in A$ let $I(a) \in C \in D$ such that inf I(a)=a; I(a) is a subdivision interval of L in the atomization D of (L, \leq) ; for distinct members a, a' of A the intervals I(a), I(a') would be disjoint; in other words the A-un of intervals I(a) ($a \in A$) would be a disjointed system of cardinality $kA=c^+$ of non empty intervals of L — absurdity, because cel $L=c< c^+$. Q. E. D.

¹⁾ For any infinite chain (L, <) we have $dL \in \{cL, (cL)^+\}$ (v. Kurepa [1935:2, 3] p. 121. Theorem 2).

2. On the rectangle hypothesis for trees.

- **2:1.** For a graph (G, R) we define the global width of (G, R) as the number 2:1:1 $k_{c'}(G, R):=\sup_A kA$, A being any antichain of graph, i. e. A is any subsystem of G containing no two distinct comparable members.
 - 2:2. The global length of (G, R) is the number

2:2:1.
$$k_c(G, R) := \sup kL$$
,

- L being any subset of G such that any 2 members of L are comparable.
- 2:3. The rectangle hypothesis or the chain \times antichain hypothesis for a graph (G, R) reads:
- (2:4) $k(G, R) \le k_c(G, R) \cdot k_{c'}(G, R)$ (cf. Kurepa D. [1963:3] nos 3:3, 4:3:3, 4:3:4 and [1964:7]). In the general case, the statement (2:4) is false.
- 2:5. The most interesting case is the corresponding statement for trees (T, \leq) :
- (2:6) $kT \leqslant k_c(T, \leqslant) \cdot k_{c'}(T, \leqslant)$ (tree rectangle hypothesis).
- 2:7. Theorem. The tree rectangle hypothesis [TRH] is an undecidable statement (conjectured in Kurepa [1935]; v. also Kurepa [1964:7], [1977:5, 6]; model for TRH: in Solovay Tennenbaum [1973]; model for TRH: independently in Jech [1967], Tennenbaum [1968]).
- 2:7:1. Theorem. The TRH for trees of cardinality \mathfrak{A}_1 is equivalent to the positive answer to the Suslin problem (Kurepa [1935] p. 106 case b), p. 124 (last passage), p. 132 $(P_4 \Leftrightarrow P_5)$.
- 2:8. Theorem. The TRH is equivalent to the statement that for every infinite tree T one has

$$2:9 kT = bT.$$

Proof. Necessity: 2:6 \Rightarrow 2:9. As a matter of fact, for every infinite tree T we have obviously $k_c T \cdot k_{c'} T = bT$; the relation 2:6 implies $kT \leqslant bT$, thus kT = bT, i.e. 2:9, because obviously $kT \geqslant bT$.

Sufficiency: 2:9 \Rightarrow 2:6. Now, this implication is implied by 2:9 and the obvious fact that $bT \leq k_c T \cdot k_{c'} T$.

2:10. Theorem. The TRH is equivalent to the statement that for every infinite totally ordered set (L, \leq)

2:10:1
$$T \subset w(L, \leq) \& kT \geqslant \aleph_0 \Rightarrow kT = bT$$
.

Proof. 2:10:2. The \Rightarrow part of 2:10 being obvious, let us prove the \Leftarrow part.

- 2:10:3. Now, in virtue of the 0:5 Theorem the equality kT = bT for every infinite $T \subset wL$ implies 0:6.
- 2:10:4. Since for every infinite tree T one has kT = bT or $kT = (bT)^+$ (D. Kurepa [1935:2, 3] p. 105 Th. 1), we have to prove that the implication 2:10:1 implies kT = bT and also TRH.

2:10:5. Let us assume the contrary, i.e. that for some ordinal there exists a tree T_{α} such that

2:10:6
$$\aleph_{\alpha} = bT, \quad kT_{\alpha} = \aleph_{\alpha+1}.$$

- 2:10:7. Then necessarily the height or the rank γT of T equals $\omega_{\alpha+1}$ and every row $R_n T_{\alpha}$ has $\leqslant k \omega_{\alpha}$ points. One proves that T_{α} contains a subtree T of cardinality $\aleph_{\alpha+1}$ such that for every $x \in T$ the set T[x] of all points of T comparable to x has the rank $\omega_{\alpha+1}$ and that x has in T infinitely many next followers and that every chain as well as every antichain of T is $\leqslant \aleph_{\alpha}$ (cf. D. Kurepa [1935:2, 3] p. 109, Th. 2).
- 2:10:8. Let \mathcal{N} be the system of all nodes of $(T, \leq)^1$; for every node N of (T, \leq) let (N, \leq_N) be a total order of \mathcal{N} such that N has neither a first nor a last member. The orderings (T, \leq) , (N, \leq_N) $(N \in \mathcal{N})$ yield a total order (T, <) of T in the following way:

for $x, y \in T$ let x < y mean that either $x \le y$ or that $x \mid_{\le} y$ and $x' <_N y'$, where N is the node contained in a row $R_{\alpha}T$ of minimal index α such that N contains a member x' < x and a member y' < y such that $x' \ne y'$ (cf. the notion of natural order extension of (T, \le) in D. Kurepa [1935:2, 3], $N \ge 2$, p. 87).

2:10:9. Let (L, \leq) be a Dedekind completion of (T, <). Then obviously 2:10:10. cel $(L, \leq) = c(T, <) = \aleph_{\alpha}$.

- 2:10:11. Let \mathfrak{D} be a total bipartion of (L, \leqslant) and E the system of all non singleton intervals occurring in this atomization \mathfrak{D} of (L, \leqslant) , (cf \mathfrak{D} . Kurepa [1935:2, 3] p. 83 No 3, p. 114). One sees easily that the rank γE of the system (E, \supset) is $\omega_{\alpha+1}$ and that every row of E is $\leqslant \aleph_{\alpha}$ and that $kE = \aleph_{\alpha+1}$.
- 2:10:12. Let us consider the system $B := \{E(\cdot, x], x \in E\}$. Every $y \in E(\cdot, x]$ is an interval of L; the end points of y are inf y, sup y and they are distinct.
- 2:10:13. For every $a \in E$ let $ia: = \{\inf y : y \supset a, y \in E\}$; then ia is a well-ordered subset of (L, \leq) ; inf a is the last member of ia.
- 2:10:14. For any given $a \in E$ the relations ix = ia, $x \in E$ have $\leq \aleph_{\alpha}$ solutions.

As a matter of fact, all these solutions constitute a strictly decreasing well-ordered family of intervals of (L, \leq) having all just inf a as its common end point.

2:10:15. If $a, b \in E$ and neither ia < ib nor ib < ia, then the intervals a and b of (L, \leq) do not overlap, i.e. the sets int a and int b are disjoint.

As a matter of fact, if the intervals a and b overlapped, then one would have $a \subset b$ or $b \subset a$, and consequently $E(\cdot, a] \subset E(\cdot, b]$ or $E(\cdot, b] \subset E(\cdot, a]$, and further $ia < \cdot ib$ or $ib < \cdot ia$, respectively, contradicting the starting assumption.

2:10:16. Let $W: = \{ix : x \in E\}$. Then

2:10:17. $W \subset w(L, \leq), kW = kE = \aleph_{\alpha+1}$.

¹⁾ A node of a tree T is every maximal subset X of T such that all members of X have same predecessors in T.

- At first, $E = \bigcup i^{-1}\{z\}$ ($z \in W$); since by 2:10:14 one has $ki^{-1}\{z\} \leqslant \aleph_{\alpha}$ for every $z \in W$, one has $kE \leqslant kW \cdot \aleph_{\alpha}$; this relation jointly with $kE = \aleph_{\alpha+1}$ in 2:10:11 implies the requested equality in 2:10:17.
- 2:10:18. In virtue of the relations 2:10:17 the assumed implication 2:10:1 would yield (put W instead of T) the equality kW = bW, i. e. $bW = \aleph_{\alpha+1}$. Since the number $\aleph_{\alpha+1}$ is regular, there would be a degenerated subset $X \subset W$ such that $kX = \aleph_{\alpha+1}$.
- 2:10:19. X being degenerated the sets $X[a, \cdot)$ are chains in $(w(L, \leq), \leq \cdot)$; therefore each of them is $\leq \aleph_{\alpha}$; since $X = \bigcup X[a, \cdot)$ ($a \in R_0 X =$ the first row of X) one concludes that $kR_0X = \aleph_{\alpha+1}$. Consequently, the set $R_0X := A$ would be an antichain of W of cardinality $\aleph_{\alpha+1}$.

If for every $x \in W$ one denotes by x' a member of E such that ix' = a, then in virtue of 2:10:15 the system $\{x', x \in W\}$ would be a set of cardinality $\mathbf{x}_{\alpha+1}$ of non overlapping intervals of the chain (L, \leq) , in contradiction with 2:10:11. This contraction ends the proof of 2:10 Theorem \leq .

2:11. Theorem. The tree rectangle hypothesis TRH implies 0:6 for every chain (L, \leq) .

Proof. In the opposite case there would be an infinite chain (L, \leq) such that $d: = d(L, \leq) = c^+$, where $c: = \operatorname{ce}^1(L, \leq) = k \omega_\alpha$. Let $\mathfrak D$ and E have the same meaning as in 2:10:11. Every subchain of (E, \supset) should be $\leq \aleph_\alpha$, therefore $\gamma \mathfrak D = \omega_{\alpha+1}$. Now, one has not $\gamma \mathfrak D < \omega_{\alpha+1}$ because the set M of all end points of members of E should be of power \aleph_α ; since M is everywhere dence in (L, \leq) , one would have $d(L, \leq) \leq \aleph_\alpha = c$, contradicting the assumption $d = c^+$.

Again $\gamma \mathcal{D} = \omega_{\alpha+1}$ does not hold either, because according to the TRH one has $k \mathcal{D} \leqslant k \mathcal{D}$ $h(\mathcal{D}) = \aleph_{\alpha}$ (because $k_c(\mathcal{D}) \leqslant \aleph_{\alpha}$, k_c , $(\mathcal{D}) \leqslant \aleph_{\alpha}$) contradicting the relations $\gamma \mathcal{D} = \omega_{\alpha+1}$, $k \mathcal{D} \geqslant k \gamma \mathcal{D} = \aleph_{\alpha+1}$. Q. E. D.

As a synthesis of theorems 0:5, 2:8 and some of our previous results we have the following

- 3:1. Main theorem. The following statements are pairwise equivalent:
- TA (Tree alternative). For every ordinal α any tree of power $\aleph_{\alpha+1}$ is equinumerous to a subchain or to a subantichain (cf. Θ . Kurepa [1935:2,3], p.109 Th. 2).
- TRH Tree rectangle hypothesis (or tree chain \times antichain hypothesis): Every tree T satisfies $kT \leq k_c T \cdot k_{c'} T$.
- (k=b) For every infinite tree T one has kT=bT.
- $(k_c, = s)$ Every infinite tree T satisfies $k_c, T = sT^{1}$ (v. 3.3 Th. in D. Kurepa [1963; 3]).
- (w) For every infinite chain (L, \leq) every tree $T \subset (w(L, \leq), \leq)$ of cardinality $(cel(L, \leq))^+$ satisfies kT = bT.
- (d=c) Every totally ordered infinite set (L, \leq) satisfies 0:6.

¹⁾ The star number of a graph (G, R) is defined as $sG: = \inf kF$, F running through the system of all families of chains of (G, R) such that $\bigcup F = G$ (v. D. Kurepa, [1963:3]. No 1.1)

 (s_1) For every family F of sets one has

$$kF = k_c F k_c, F \cdot s_1 F$$

where F denotes the graph (F, v), $x \cap y := x \cap y = y$:

$$s_1F$$
: = $\sup_x sF(\cdot, x]$, $F(\cdot, x]$: = $\{y: y\supset x, y\in F\}$.

(cf. D. Kurepa [1963:3] p. 34 Th. 4.3.4).

Proof. The equivalence of the statements TA, TRH, k=b is obvious (cf. also 2:11 Th). Further, $TRH \Leftrightarrow k_{c'}=s$ (v. 3.3 Th. p. 30 in D. Kurepa [1963:3]; $TRH \Leftrightarrow (s_1)$ (v. 4.3.4 Th. p. 34 in D. Kurepa [1963:3]); $(k=b) \Leftrightarrow (w)$ (v. 2:10 Th); $(w) \Leftrightarrow (d=c)$ (s. 0:5 Th). Each of the statements: TA, TRH, k=b, $k_{c'}=s$, (w), (d=c), (s_1) having been involved at least once in an equivalence, the proof of the Main Theorem is finished.

3:2. Another version of the Main Theorem. In the wording of the 3:1 Theorem it is legitimate to replace everywhere the word tree by the word pseudo-tree.

4. Denotations

kX = the cardinal number of X; if n is a cardinal then kn := n.

A pseudotree or ramified set is any ordered set (E, \leq) in which no member x has two incomparable ancestors a, b < x; in other words, for every $x \in E$ the set $E(\cdot, x) := \{y : y \leq x, y \in E\}$ is a chain (v. D. Kurepa [1935:2,3] pp. 69, 127).

S-un (S being any set or any class): = any procedure f by which to every member x of S corresponds an object fx(fx) may be a number, point, set, structure, ...); in particular, 2-un: = ordered pair, 3-un: = ordered triplet, n-un (for any number n): = ordered n-tuple = n-sequence. One says: f is an S-un.

$$t(X, \leq) = \text{order-type } (X, \leq).$$

v = the vacuous or the empty set.

 $\omega_{(n)}$ (n being a given set or cardinal number) is the first ordinal number of cardinality kn.

: means ,,such that".

REFERENCES

Jech Thomas [1967] Nonprovability of Suslin hypothesis; Comm. Math. Univ. Carolinae, 8:2 (Prag 1967), 291—305 (\downarrow 1967:02:06) (v. M. R. 35 (1968) (M. MORLEY) #6564).

Kurepa, Đuro [1935:2] Ensembles ordonnés et ramifiés, Thèse. Paris 1935 VI + 140. [1935:3] Ensembles ordonnés et ramifiés. Publ. Math. Univ. Belgrade, 4 (Beograd 1935) 1—138.

[1963:3] Star number and antistar number of ordered sets and graphs. Zvjezdani broj i antizvjezdani broj uređenih skupova i grafova. Glasnik Mat. fiz. astr. (2) Vol. 11 (Zagreb 1963), 27—37.

[1964:6] Monotone mappings between some kinds of ordered sets. Monotona preslikavanja među nekim vrstama uređenih skupova. Glasnik Mat. fiz. astr. (2) T. 19 (Zagreb 1964), 175—186.

[1964:7] On the rectangle tree hypothesis. 1964 International Congress for Logic, Methodology and Philos. of Science 1964:08:26—09:02. Program and Abstracts, Jerusalem Israel, 1964 p. 14.

[1977:3] Ramified sets or pseudotrees. Publ. Inst. Math. 22 (36) (Beograd 1977)

pp. 149—163.

[1977:5] Deux classes d'hypothèses concernant le continu linéaire ou temporel. Mathematica Balkanica 7 (Beograd 1977), 205—215.

[1977:6] Some remarks on my paper Sur deux classes d'hypothèses concernant le continu linéaire. Mathematica Balkanica 7 (Beograd 1977), 217—228.

Solovay, R. — Tennenbaum, S. [1971] Iterated COHEN extension and SUSLIN's problem; Annals of Mathematics, 94 (1971), 201—245 (v. M. R. 45 (1973): 2 (T. JECH) #3272.

Tennenbaum, S. [1968] On SUSLIN's problem: Proc. Nat. Acad. Sci. USA, 59 (1969), 60—63 (v. M. R. 37 (1969) (James D. Halpern) #55.

Laze Simića 9 11000 Beograd, Jugoslavija