
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 30 (44), 1981, pp. 33{39

PROPERTIES OF MONOTONE MAPPINGS

IN PARTIALLY ORDERED SETS

Rade M. Daci�c

0. Introduction. The importance of monotone (increasing and decreasing)
mappings in real analysis is well known. It appears that in studying many aspects
of the theory of partially ordered sets the impotrance of monotone mappings is not
less than in real analysis. In this paper we study some of these aspects with the
stress on the existence of �xed points and the structure of the sets of �xed points.

First of all shall �x the terminology and notation. Let P be a partially
ordered set. A self-mapping of P is a function f : P ! P . A point a is a �xed
point of a self-mapping f of P if f(a) = a. The set of �xed points of a self-
mapping f of P is denoted by I(f; P ). A mapping f : P ! P 0, where P and P 0

are partially odreder sets, is isotone (or increasing) or order-preserving if, for any
x; y 2 P � y implies f(x) � f(y). The mapping f is antitone (or decreasing or
order-reversing if, for any x; y 2 P; x � y implies f(x) � f(y). If a p.o. set is such
that every isotone self-mapping of it has at least one �xed point, then such a set is
said to have the �xed point property . It is proved by A. Tarski and A. Davis that for
a lattice the �xed point property is equivalent to lattice completeness. Many classes
of p. o. sets have the �xed point property, but only trivial sets have property that
any antitone self-mapping of them has a �xed point. Even two element chain ( a
totally ordered set) fail to have this property, since the mapping f(a) = b; f(b) = a

is a antitone without �xed point, for the chain a < b. From this reason we shall
those antitone mapping which have some additional properties.

A p.o. set P is said to be of �nite length provided that every chain C of P
has a �nite number of elements.

If x; y �2 P and neither x � y nor y � x, then we write xky.

The cardinality of a set A is denoted by jAj.

1. Some wanted properties. Let be a non-void set and f1; f2; . . . ; fn
self-mapping of P . We say that f is factored into f1; f2; . . . ; fn provided that
f = f1 Æf2 Æ � � � fn. It is seen at once that a composition of increasing self-mappings
of an ordered set P is also an increasing self-mapping of P , while a composition
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of decreasing self-mappings of P is increasing according to wether the number of
mappings is even or odd.

If g = f Æf , then f is said to be a square root of g. For example, the mapping
de�ned on the chain x1 < x2 < � � � < xn by f(xi) = xn+1�i is a square root of the
identity mapping on the chain.

Question 1. Let P be a partially ordered set and f : P ! P an increasing
mapping. Under which conditions there exists two decreasing self-mapings, f1 and
f2, of P such that f = f1 Æ f2? In the special case under which conditions f is a
square of a decreasing mapping g (i.e. f = g Æ g for decreasing g)?

It is an easy matter to show that, if the set of �xed points of an antitone
self-mapping of a partially ordered set is non-empty and has more than one point,
then any two distinct points of this set are incoparable. Hence the set of �xed
points of an antitone self-mapping of a partially ordered set P , if non-empty, forms
an antichain.

Question 2. Let P be a partially ordered set A � P an antichain. Under
which conditions on P there exists an antitone f : P ! P such that A is just the
set of �xed points of f?

2. Antitone self-mappings of �nite sets. We �nd some conditions under
which an antitone self-apping of a �nite set P has a unique �xed point.

De�nition 2.1. Let P 6= 0; f : P ! P . The set P is said to be f�producing
i� there exists a point a 2 P such that P = fa; f(a); f2(a); . . . g. A set P is partly
f-producing i� there is a non-void subset P 0 of P such that P 0 is f-producing.

Theorem 2.1. Let P be a �nite chain. An antitone self-mapping of P has
a unique �xed point if and only if P is partly f-producing and f does not permute
two distinct points.

Proof . We need the following lemma.

Lemma 2.2. Let P be a �nite nonvoid chain, let f : P ! P be antitone,
let P be f-producing and f does not permute two distinct points. Then f has a
unique �xed point.

Proof of the lemma 2.2. If jP j = 1, there is nothing to prove. So take jP j > 1.
Let a 2 P . If f(a) = a, the proof is complete, otherwise a < f(a) or a > f(a).
Suppose a < f(a) (the case f > f(a) is treated similarly). Then f(a) � f2(a).
Equality f(a) = f2(a) proves the lemma. Let us take f(a) > f2(a). We distinguish
two cases.

Case 1Æ. f2(a) < a. It follows f3(a) > f(a) (equality f3(a) = f(a) is
excluded, since f has no pair of permuted points.). Also f4(a) < f2(a) and so on.

In this way we obtain the sequence

� � � f2k(a) < f2k�2(a) < � � � < f2(a) < a < f(a) < f3(a) < � � � < f2k�1(a) < � � �
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P being �nite there exists an integer k such that f2k(a) = f2k+2(a) = � � �
and f2k�1(a) = � � � or f2k+1(a) = f2k+3(a) = � � � ).

But then points f2k(a) and f2k�1(a) (or f2k(a) and f2k+1(a)) are permuted.
So this case cannot occure.

Case 2Æ. a � f2(a). Then f(a) � f3(a) � f2(a) � a. Applying repeatedly
f we obtain

a � f2(a) � f4(a) � � � � � f2k(a) � � � � � f2k+1(a) � f2k�1(a) � f3(a) � f(a):

Since P is �nite, there exists an integer m such that f2m(a) = f2m+2(a) =
� � � and f2m�1(a) = f2m+1(a) = � � � (or f2m+1(a) = f2m+3(a) = � � � ).

Supposition f2m(a) 6= f2m�1(a) (or f2m(a) 6= f2m+1(a)) contradict the fact
that f is non-permuting. Hence, there exists an integer m such that f2m(a) =
f2m�1(a) (or f2m(a) = f2m+1(a)). It follows that fm�1(a) (or f2m(a) = f2m+1(a))
is a �xed point.

Let us note �rst that the �xed point (if it exists) is unique. If we suppose
that there are two, x and y say, we would, for example, have x < y, hence
x = f(x) � f(y) = y, a contradiction.

Proof of the theorem 2.1. Since f(A) � A, where A is �nite chain, the
suÆciency of the condition follows from the above lemma.

Necessity is obvious namely, if a is a �xed point of f , then f(a) = a nad P

is partly f -producing for P 0 = fag.

Theorem 2.3. Let P be a partially ordered set of �nite lenght and f an
antitone self-mapping of P such that f(P ) = C, where C is a maximal chain of
P nad C is partly f-producing. Then f has a unique �xed point.

Proof . If such antitone self-mapping f of P exists, then the existence and
unicity of the �xed point of f follows from the previous theorem, where P from
the previous theorem is replaced by C. The only thing to be proved is that the set
of self-mappings is non-empty. We shall construct one such mapping.

Let C = fx1; . . . ; xng be a maximal chain of P , where x1 < x2 < � � � < xn.
Let us set f(xi) = xn+1�i. To de�ne f on the rest of P we shall de�ne an isotone
self-mapping g of P and take f to be a square root of g. For x 2 C we set
g(x) = x.

Let x 2 P . Set

Cfc 2 Cjxkcg

Evidently Cx = ? if x 2 C. Conversely if Cx = ?, then C \ fxg is a chain,
so x 2 C, by maximality of C.

Note also, that for a; b 2 PnC,

(*) a < b implies min Ca � min Cb
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In fact supposing min Cb < min Ca, we would have

max fc 2 Cjc � bg < max fc 2 Cjc � ag

which is impossible.

For any x 2 PnC set g(x) = min Cx. Let us verify that g is isotone.

If a < b and a; b 2 PnC, then from (�) it follows that g(a) � g(b).

Suppose now that only a (or b) is in C.

If a 2 C; b 2 PnC, then a < c for any c 2 Cb, hence a = g(a) < g(b). If
a 2 PnC; b 2 C, then c < b for any c 2 Ca, hence again g(a) = min Ca < b = (g)b.

In this way, for any a; b 2 P; a � b implies g(a) � g(b). We now de�ne f to
be a square root of g. Evidently f is antitone and sends P into C.

3. Some antitone self-mappings with unique �xed points. In our
paper [2] we proved the following theorem

Theorem 3.1. Let P be a complete lattice and g; h : P ! P two isotone
conjugately factorable isotone mappings. Then

(i) f1(I; h; P )) � I(g; P )

(ii) f2(I(g; P )) � I(h; P ).

Taking f1 = f2 = f we can state the following

Theorem 3.2. Let P be a complete lattice and f : P ! P an antitone
mapping. Then

f(I(f2; P ) � I(f2; P )

Using this theorem we shall prove the following

Theorem 3.3. P be a complete lattice and f : P ! P an antitone mapping
such that one of the following conditions is ful�lled:

(C) For any x 2 I(f2; P ) is x � f(x) or xkf(x)

(C 0) for any x 2 I(f2; P ) is x � f(x) or xkf(x)

Then f has a unique �xed point.

Proof . According to Tarski's theorem the set I(f2; P ) is non-empty and
contains a least element, m say. By theorem 3.2 f(m) � m, and by condition (C)
the sign > is excluded, so f(m) = m.

To prove the uniqureness of the �xed point of f , we assume that c is another
�xed point of f . Then c 2 I(f2; P ), hence c � m, which implies c = f(c) �
f(m) = m, or c = m.

The existence and uniqueness of �xed point of f satisfying (C 0) is proved
using the greatest element, n say of I(f2; P ).

Remark . The relevance of antitone mappings satisfying Condition (C) is
pointed out in [4].
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Let us now examine the structure of some subsets of I(f2; P ). Provided that
P is a complete lattice and f an antitone self-maping of P .

Put
S = fx 2 I(f2; P )jx � f(x)g

S0 = fx 2 I(f2; P )jx � f(x)g:

One easily proves the following

Proposition 3.4. If x 2 S and y < x, then y 2 S. Also if x 2 S0 and y > x,
then y 2 S0.

We have the following

Proposition 3.5. If P is a complete lattice and f an antitone self-mapping
of P , then the set S is left complete semi-lattice, while the set S0 is a right complete
semi-lattice(subsemi-lattice of I(f2; P )).

Proof . By theorem 3.3. both sets are non-empty. Let A � S; A 6= ? and
a = inf A (which exists in I(f2; P ) according to Tarski's theorem). Then for any
x 2 A is a � x. Since f is antitone and x 2 S, it follows f(a) � f(x) � x � a,
hence a 2 S, proving the �rst part of the proposition. The second part is proved
analogously.

4. Connection between I(f; P ) and I(f2; P ).

If P is a partially ordered set and f : P ! P antitone, then f2 : P ! P ,
being isotone, has much more possibilities to have �xed points. We now study the
connection between �xed points of f2 and �xed points of f (if they exist).

A very easy and special case is when I(f2; P ) contains only one point. Then
this point is also �xed point of f .

In the following we asume f antitone and formulate a necessary and suÆcient
condition for an element of I(f2; P ) to be an element of I(f; P ).

For any a 2 P let us consider the set

(1) Sa = ffÆ(a) = a; f(a); f2(a); . . . g

and itroduce in Sa the operation o de�ned by

fk(a) Æ fm(a) = fk+m(a)

Denote by (f; a) the so obtained semigroup and by M the set all (f; a), for
a 2 P , which are not of order 2. Also we shall write M(f; P ) the union of all
elements of M.

Theorem 4.1. Let P be a partially ordered set, f : P ! P an antitone
mapping and I(f2; P ) 6= ?. Then I(f; P ) 6= ? if and only if M 6= ? and
I(f2; P ) \M(f; P ) 6= ?. Moreover I(f; P ) = I(f2; P ) \M(f; P ).
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Proof . Suppose I(f2; P ) 6= ?; M 6= ? and I(f2; P ) \M(f; P ) 6= ?. Let
a be an element of the last set. Then a = f2(a) and the set (1) is reduced to
fa; f(a)g. But (f; a) 2 M, hence jfa; f(a)gj = 1, or a = f(a), that is a 2 I(f; P ).

Conversely, let a = f(a). Then the set (1) is reduced to fag. The setM(f; P )
is non-empty and contains at least one element of I(f2; P ). This is true for every
element in I(f; P ). Every element in I(f2; P ) \M(f; P ) and no element of the
last set is out of I(f; P ).

We now take P to be a complete lattice and f : P ! P an antitone maping.
Then

(i) The set I(f2; P ) is non-empty;

(ii) f(I(f2; P )) � I(f2; P ).

The assertion (i) is one of the conclusions of Tarski's theorem, since f2 is
isotone, and (ii) is a consequence of our theorem 3.2 (see [2]).

Let us give the direct proof of (ii). If x 2 I(f2; P ), then f2(f(x)) =
f(f2(x) = f(x), hence f(x) 2 I(f2; P ), as required.

This proof of (ii) makes no use of the fact that P is a complete lattice. The
only fact of importance is that I(f2; P ) 6= ?. So we have the following theorem.

Theorem 4.2. Let P be a non-void partially ordered set, f : P ! P antitone
and let I(f2; P ) 6= ?. Then f(I(f2; P )) � I(f2; P ).

We now remind the de�nition of a join antimorphism. Let P be a complete
lattice and f : P ! P such that, for any A � P; A 6= ?,

f(sup A) = inf f(A)

Such a self-mapping of P is refered to as a join antimorphism.

Taking A = fa; bg, with a � b, we �nd that, if f is a join antimorphism,
a � b implies f(a) � f(b), i. e. a join antimorphism is an antitone mapping . On
the other hand, not every antitone mapping is a join antimorphism.

By Tarski's theorem [1], under the suppositions on the theorem 3.2, m =
min I(f2; P )) exists and from the theorem 3.2 we infer m � f(m), so the following
corollary is valid.

Corollary 4.3. (A. E. Roth [4]). Let P be a complete lattice and f : P !
P a join antimorphism. Then there exists x 2 P such that x = f2(x) and x � f(x).

In the following comentary we shall improve the above Roth's theorem. First
of all f may be any antitone mapping, not necessarily a join antimorphism. Be-
sides, if jI(f2; P )j > 1, with an antitone f; x < f(x) for at least one x 2 I(f2; P ).
In fact, if m = min I(f2; P ) and m = f(m), then for any x > m (such an x exists,
according to the supposition on I(f; P ) it would be f(x) � m. Thorem 3.2 yields
f(x) = m and f2(x) = x = f(m) = m; a contradiction.

Denote by m and n the least and the greatest element of the lattice I(f2; P ).
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Proposition 4.4. Let P be a complete lattice, f : P ! P an antitone
mapping. If one of the conditions is satis�ed:

(a) m 2 I(f; P ), or

(b) n 2 I(f; P ),

then jI(f2; P )j = 1.

Proof . (a) Suppose jI(f2; P )j > 1. Then there exists x 2 I(f2; P ), such
that x > m. It follows f(x) � f(m), or f(x) � m. From the Theorem 3.2 we �nd
f(x) � m, hence f(x) = m. Since x 2 I(f2; P ) we have x = f2(x) = f(m) = m,
which is a contradiction.

The proof of (b) is analogous.

Let P be a partially ordered set and f : P ! P be a bijection and antitone.
Then f is said to be a d-automorphism of P .

Not every partially ordered set admits a d-automorphism.

Example. Let P = fa; b; cg; a < b; a < c; bkc. Then no d-automorphism of
P exists.

A partially ordered set having at least one d-automorphism is said to be a
s-set . In [3] more examples of sets are constructed.

It is clear that the set of �xed points of an isotone self-mapping of a partially
ordered set need not be a s-set. In contrast to this fact we have the following
theorem.

Theorem 4.5. Let P be a partially ordered set having �xed point property.
Then for any antitone f : P ! P the set I(f2; P ) is a s-set,

Proof . By the supposition on P; I(f2; P ) 6= ? and by Theorem 3.2
f jI(f2; P ) is a self-mapping of I(f2; P ).

We need the following notion. Let P be a partially ordered set and f : P !
P . A point a of P is said to be permuted by f i� there exists another point b of
P such that f(a) = b; f(b) = a.

To �nish the proof we shall show that every point of I(f2; P ) is either a
�xed point of f or a permuted point of f . Let x 2 I(f2; P ). Put f(x) = y. Then
f(y) = f((f(x)) = x, hence x is a permuted point by f or y = x.
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