LOCALLY EVENTUALLY CONTRACTIVE FIXED-POINT MAPPINGS

Ljubomir B. Ćirić

(Communicated September 4, 1978.)

Let (M, d) be a metric space and T a mapping of M into itself. A mapping T is said to be locally contractive on M iff for each u in M there exists $S(u, r(u)) = \{v : d(u, v) < r(u)\}$ such that d(Tx, Ty) < d(x, y) for all x, y in S(u, r(u)), $x \neq y$. If $r(u) \geqslant \varepsilon > 0$ for each u in M, then T is called ε -contractive. M. Edelstein [3], E. Rakotch [5] and S. Naimpally [4] have constructed some examples which show that locally contractive mappings may be without fixed or periodic points. M. Edelstein [3] has proved some fixed-point or periodic-point theorems of ε -contractive mappings which have a property that a sequence $\{T^n x\}_{n=0}^{\infty}$ contains a convergent subsequence for some $x \in M$. In [2] is introduced a class of mappings which satisfy the following condition: for every x, y in M there exists an integer m = m(x, y) such that

(1)
$$x \neq y$$
 implies $d(T^n x, T^n x) < d(x, y)$ for all $n \geqslant m(x, y)$.

Such mappings are called eventually contractive operators, and if they are orbitally cont nuous and $\{T^n x\}_{n=0}^{\infty}$ contains a convergent subsequence, then they have f xed-point.

In this paper a class of mappings which satisfy a locally contractive condition of the type (1) is introduced and f xed-point and per od.c-point theorems for such mappings are proved.

Definition. A selfmapping T of a metric space M into itself we call a locally eventually contractive mapping iff for each u in M there exists a spherical nbd S(u, r(u)) of u such that for every $x, y \in S(u, r(u))$, $x \neq y$, there exists a positive integer m(x, y) such that (1) holds, i.e.

$$d(T^n x, T^n y) < d(x, y)$$
 for all $n \ge m(x, y)$.

It is clear that a class of locally eventually contractive mappings includes eventually contractive mappings with $r(u) = \infty$, and locally contractive mappings with m(x, y) = 1. The following example shows that the discovered class of mappings is extensive.

Example. For each positive integer n let

$$M_n = \{x = (x_1, x_2) : x_1 = 2^{1-n} \cos t, x_2 = 2^{1-n} \sin t : 0 < t \le 2\pi \}$$

be a subset of the Euclidean plane. Put $M = \bigcup_{n=1}^{\infty} M_n$ and let (M, d) be a metric space with usuall metric. Define $T: M \to M$ by

$$T(t) = 2t, \text{ if } 0 < t < \frac{\pi}{2},$$

$$= t + \frac{\pi}{2}, \text{ if } \frac{\pi}{2} \le t < \pi$$

$$= \frac{t}{2} + \pi, \text{ if } \pi \le t \le 2\pi.$$

Then T is continuous and has infinite many fixed-poits: $(1, 0), (2^{-1}, 0), \ldots$, $(2^{1-n}, 0), \ldots$ Therefore, T is not eventually contractive on M. Also, T is not locally contractive at every point x with $t_x \le \pi$ and $t_x = 2\pi$. But T satisfies (1), as for every $u \in M_n$ we may put $r(u) = 2^{-n}$ and then for $x, y \in S(u, 2^{-n})$ choose corresponding m(x, y), which is large only in the case when $(2^{1-n}, 0)$ is between x and y.

Now we shall indicate sufficient condition for the existence periodic points of locally eventually contractive mappings.

Theorem 1. Let T be a locally eventually contractive selfmapping of a metric space M into itself. If for some x in M the sequence $\{T^n x\}_{n=0}^{\infty}$ contains a convergent subsequence and T is orbitally continuous, then T has a periodic point in M.

Proof. Let x and u in M be such that $\lim_{i\to\infty} T^{n_i}x = u$. Suppose that $T^n x \neq T^s x$ whenever $n \neq s$, since otherwise the Theorem follows. Choose fixed positive integers s and k such that $T^s x$ and $T^{s+k} x$ are in S(u, r(u)) and $d(T^s x, T^{s+k} x) < \frac{1}{3} r(u)$. Then by (1) for every $n \geqslant m(T^s x, T^{s+k} x) + s$ one has

(2)
$$d(T^n x, T^{n+k} x) = d(T^{n-s} T^s x, T^{n-s} T^{s+k} x) < d(T^s x, T^{s+k} x) < \frac{1}{3} r(u).$$

Hence

$$\lim_{i\to\infty}d(T^{n_i}x,\,T^{n_i+k}x)=d(u,\,T^ku)\leqslant\frac{1}{3}\,r(u),$$

as $\lim_{i\to\infty} T^{n_{i+k}} x = T^k u$ by orbitally continuity of T. Therefore,

$$T^k u \in S\left(u, \frac{1}{3}r(u)\right) \subset S(u, r(u)).$$

Now we shall show that $T^k u = u$. Assume that $T^k u \neq u$. Since $\lim_{i \to \infty} T^{n_i} x = u$, $d(u, T^s x) < r(u)$ and $T^k u \in S(u, r(u))$, by (1) we may choose a positive integer $p \ge m(u, T^k u)$ such that $d(T^s x, T^{s+p} x) < \frac{1}{3} r(u)$ and

(3)
$$d(T^p u, T^p T^k u) = d(T^p u, T^{p+k} u) < d(u, T^k u).$$

Let now $n \ge m(T^s x, T^{s+p} x) + s + m(T^s x, T^{s+k} x)$ be any positive integer such that $d(u, T^n x) < \frac{1}{3} r(u)$. Then

$$d(u, T^{n+p} x) \leq d(u, T^{n} x) + d(T^{n-s} T^{s} x, T^{n-s} T^{s+p} x)$$

$$< \frac{1}{3} r(u) + d(T^{s} x, T^{s+p} x) < \frac{2}{3} r(u),$$

$$d(u, T^{n+p+k} x) \leq d(u, T^{n+p} x) + p(T^{n+p-s} T^{s} x, T^{n+p-s} T^{s+k} x)$$

$$< \frac{2}{3} r(u) + d(T^{s} x, T^{s+k} x) < r(u).$$

Therefore, for sufficiently large n

(4)
$$T^{n+p}x, T^{n+p+k}x \in S(u, r(u)) \text{ whenever } d(u, T^nx) < \frac{1}{3}r(u).$$

Since $\lim_{i\to\infty} T^{n_i}x = u$, there exists a positive integer N such that $d(u, T^{n_i}x) < \frac{1}{3}r(u)$ whenever i>N. Then for any fixed $n_i \ge m(T^s x, T^{s+p}x) + s + m(T^s x, T^{s+k}x)$ with i>N we have

$$d(T^{n} x, T^{n+k} x) = d(T^{n-n_{i}-p} T^{n_{i}+p} x, T^{n-n_{i}-p} T^{n_{i}+p+k} x)$$

$$< d(T^{n_{i}+p} x, T^{n_{i}+p+k} x)$$

for every $n \ge m(T^{n_i+p} x, T^{n_i+p+k} x)$. Hence

(5)
$$d(u, T^k u) \leqslant d(T^{n_i+p} x, T^{n_i+p+k} x),$$

as $d(u, T^k u)$ is a claster point of a sequence $\{d(T^n x, T^{n_i + k} x)\}_{n=1}^{\infty}$. But (5) implies

$$d(u, T^k u) \leqslant \lim_{i \to \infty} d(T^{n_i+p} x, T^{n_i+p+k} x) = d(T^p x, T^{p+k} x),$$

which is a contradiction with (3).

The proof is complete.

Now we bring sufficient condition for the existence of a fixed point. We recall that a mapping T is said to be asimptotically regular at x in M iff $\lim d(T^n x, T^n y) = 0$.

n→∞

Theorem 2. Let T be a locally eventually contractive mapping and let for some x in M the sequence $\{T^n x\}_{n=0}^{\infty}$ contains a convergent subsequence. If T is orbitally continuous and asimptotically regular at x, then T has a fixed point.

Proof. Let u in M be such that $\lim_{i\to\infty} T^{n_i}x = u$. Since T is asimptotically regular at x, there exists a positive integer K such that n>K implies $d(T^nx, T^{n+1}x) < \frac{1}{3}r(u)$. Hence

$$\lim_{i\to\infty} d(T^{n_i}x, T^{n_{i+1}}x) = d(u, Tu) \leq \frac{1}{3} r(u).$$

Therefore, in this case $T^k u \in S(u, r(u))$ for k = 1. Then, as in Theorem 1, it follows that Tu = u. The proof is complete.

Note that if a locally eventually contractive mapping is not orbitally continuous, then T may be without periodic points. The following example shows it.

Example 2. Let M = [0, 1] be a compact subset of the Euclidean plane. Define $T: M \to M$ by $Tx = \frac{x}{2}$, if $x \neq 0$ and T(0) = 1. Then T satisfies (1) with r(u) = diam(M), m(x, y) = 1 for $x \neq 0$, $y \neq 0$ and $m(0, x) = E\left(\log_2 \frac{4}{x}\right)(E(a) - \text{the greatist integer not exceeding a})$. But T has not a periodic or fixed point.

REFERENCES

[1] Lj. Ćirić, On locally contractive mappings and fixed points (to appear).

[2] Lj. Ćirić, Fixed and periodic points for a class of contractive operators, Publ. Inst. Math., 18 (32) (1975), 57-69. MR 55 # 4121.

[3] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79. MR 24 # 2936.

[4] S. A. Naimpally, A note on contractive mappings, Indag. Math., 26 (1964), 275—279. MR 29 # 590.

[5] E. Rakotch, A note on α -locally contrative mappings, Bull. Res. Council Israel, F 10 F, (1962), 188—191. MR 26 \pm 4319.

[6] E. Rakotch, On ε -contractive mappings, Bull. Res. Concil Israel, F 10 F (1961), 53—58. MR 32 \pm 4683.

[7] B. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257—290. MR 55 # 6406.