RIGID ARONSZAJN TREES¹⁾

by

Stevo Todorčević

Abstract. We shall construct $2 \aleph_1$ mutually nonisomorphic totally rigid Aronszajn trees. So, in particular, we get a positive answer to a Jech problem.

1. Introduction and definitions. We work in ZFC set theory, and adopt the usual notations and conventions. Terminology on trees is as in [Ku 1] and [Je 2].

A tree is any (partially) ordered set (T, \leq_T) , such that for every $x \in T$ the set $(\cdot, x) := \{y \in T \mid y <_T x\}$ is well ordered. The height $\gamma(x)$ of a point $x \in T$ is the order type of the set (\cdot, x) . Let α be any ordinal, then the α^{th} level of the tree is defined by $R_{\alpha}T = \{x \in T \mid \gamma(x) = \alpha\}$.

Let $\gamma T = \min \{ \alpha \mid R_{\alpha} T = \varnothing \}; \ \gamma T$ is the height of the tree T (we shall often write T instead of (T, \leqslant_T)). With $\|$ (more precisely $\|_T$) we shall indicate the relation of noncomparability in the tree T. A totally \leqslant_T -ordered subset of T is called a *chain* of the tree T. A maximal chain is called *branch*; α -branch is any branch whose order type equals α . A set $A \subseteq T$ is called *antichain* of the tree T provided $x \mid y$, for every $x, y \in A$, $x \neq y$. A set $X \subseteq T$ is an *initial part* of T, if $(\cdot, x) \subseteq X$, for every $x \in X$. A *node* of the tree T is every equivalence class wrt the relation \sim defined by: $x \sim y$ iff $(\cdot, x) = (\cdot, y)$. For every $x \in T$ let $\{y \in T \mid y \geqslant_T x\}$ be denoted by T^x ; it will be considered also as a tree wrt the order $\leqslant_T \cap (T^x)^2$.

Let $A \subseteq T$ be any subset, Let $\mathcal{F} = \{(T(x), \leqslant_{\lambda}) | x \in A\}$ be any family of pairwise disjoint trees, so that $T \cap T(x) = \emptyset$, for every $x \in A$. We define the colateral intercalation (see "intercatation latérale" [Ku 1] p. 101), yielding a new tree $S = Lt_A(T, \mathcal{F})$ so that $S = T \cup \{T(x) | x \in A\}$ where \leqslant_S is defined by:

- (i) $\leq_S \upharpoonright T^2 = \leq_T \text{ and } \leq_S \upharpoonright T^2(x) = \leq_x, \text{ for every } x \in A;$
- (ii) $(\cdot, x]_T <_S T(x)$ and $(S (\cdot, x]_T) \parallel_S T(x)$, for every $x \in A$.

¹⁾ The main result of this paper wes presented 1978:01:06 and is contained in § 7 pp. 71—79 of the author's Master Thesis *Drveta* [Trees] Beograd 1978 pp. 106, and which was defended on the University of Belgrade in 1978. I wish to express my gratitude to Professor D. Kurepa for supervising this research.

Let us remark that T is an initial part of S and that T is a subtree of the tree S.

A normal ω_1 -tree is defined as in [Je 2] p. 58. Let $\omega \omega = \bigcup \{\alpha \omega \mid \alpha < \omega_1\}$ be the set of all sequences s whose domain is a countable ordinal and whose values are the natural numbers. Let l(s) = dom(s). Any normal ω_1 -tree can be represented by a set $T \subseteq \omega_1 \omega$ (ordered by the natural ordering of $\omega_1 \omega$), which satisfies the following conditions:

- (1) for each $s \in T$ and each $n \in \omega$, $s \cap n \in T$,
- (2) for each $s \in T$ and each $\alpha < \omega_1$, there is $t \in T$ such that $l(t) = \alpha$ and $t \subseteq s$ or $t \supseteq s$,
- (3) for each $\alpha < \omega_1$, $T \cap {}^{\alpha}\omega$ is at most countable.

An isomorphism of two trees is a one-to-one mapping of T_1 onto T_2 which preserves the partial ordering. An automorphism of T is an isomorphism of T onto itself. A tree T is called rigid if the only automorphism of T is the identity. T is said to be totally rigid if for no $x\neq y\in T$, T^x and T^y are isomorphic. By $\sigma(T)$ we denote the cardinality of the set of all automorphisms of T ([Je 2] p. 59). A Suslin tree is any normal ω_1 -tree with no uncountable antichain; an Aronszajn tree is any normal ω_1 -tree with no uncountable chain; a Kurepa tree is any normal ω_1 -tree having at least \aleph_2 ω_1 -branches.

2. Known results and a Problem. Jech [Je 2] has proved that if T is a normal ω_1 -tree, then $\sigma(T)$ is either finite, or $2^{\aleph_0} \leqslant \sigma(T) \leqslant 2^{\aleph_1}$ and $\sigma(T)^{\aleph_0} = \sigma(T)$. He has also proved that if T has no Suslin subtree then either $\sigma(T)$ is finite or $\sigma(T) = 2^{\aleph_0}$ or $\sigma(T) = 2^{\aleph_1}$ and that it is consistent that there is a Suslin tree T with $\sigma(T)$ of arbitrary prescribed cardinality k between 2^{\aleph_0} and 2^{\aleph_1} provided $k \aleph_0 = k$.

Aronszajn, Kurepa and Suslin trees are main kinds of normal ω_1 -trees. The following two theorems give a summary of the known results on these trees with respect to their existence, isomorphism and automorphism.

Theorem 2.1.

- 1. (Aronszajn) There exists an Aronszajn tree.
- 2. (Gaifman-Specker) There exist 281 non-isomorphic Aronszajn trees.
- 3. (Jech, Tennernbaum) It is consistent that a Suslin tree exists.
- 4. (Jech) It is consistent that there are 2 %, non-isomorphic Suslin trees.
- 5. (Lévy, Rowbottom, Stewart) It is consistent that a Kurepa tree exists.
- 6. (Jech) It is consistent that there are 281 non-isomorphic Kurepa trees.

A proof of 1 is in [Ku 1] p. 96,; a proof of 2 is in [Ga Sp]; proofs of 3 and 5 could be found, e.g., in [Je 1]; proofs of 4 and 6 are in [Je 2]. Statements 3, 4, 5 and 6 hold also in L according to Jensen, Jech Solovay and Jech, respectively.

Theorem 2.2. It is consistent that:

- 1. (Jensen) There exists a rigid Suslin tree:
- 2. (Jensen) There exists a Suslin tree T, such that $\sigma(T) = 2\%$.
- 3. (Jensen) There exists a Suslin tree T, such that $\sigma(T) = 2^{\aleph_1}$.
- 4. (Jech) There exists a rigid Kurepa tree.
- 5. (Jech) There exists a Kurepa tree T, such that $\sigma(T) = 2\%$.
- 6. (Jech) There exists a Kurepa tree T, such that $\sigma(T) = 2^{81}$.

For proofs of 1, 2, 3 see [DeJo]; for proofs of 4, 5, 6 see [Je 2]. Moreover, all these statements hold in L.

After the results in Theorem 2.2. Jech (see [Je 2, Problem] p. 70) raises the question as to whether in ZFC there exists a rigid normal ω_1 -tree. Here we shall prove that the answer to this problem is affirmative. Namely, we shall construct 2^{\aleph_1} mutually non-isomorphic totally rigid Aronszajn trees. The main result was announced in [To].

3. Rigid Aronszajn trees. We recall some definitions from [Ga Sp]. Let s be a sequence and X a set of ordinals, then $s \mid X = (s_{\alpha_0}, \ldots, s_{\alpha\beta}, \ldots) \alpha_{\beta < l(s)}$, where $X = \{\alpha_0, \ldots, \alpha_{\beta}, \ldots\}$, $\alpha_0 < \cdots < \alpha_{\beta} < \cdots <$ and $s = (s_{\alpha})_{\alpha < l(s)} \cdot s \mid \overline{X}$ is defined by $s \mid (l(s) - X)$. If $s \mid X = s'$ and $s \mid \overline{X} = s''$ then we write $s = s' *_X s''$. If s' and s'' are sets of sequences then we put $s' *_X s'' = \{s' *_X s'' \mid s' \in s'' \text{ and } s'' \in s'''\}$.

The following properties follow easily (see [Ga Sp] p. 4.):

- If $s, t \in S' *_X S''$ then $s \subseteq t$ iff $s \mid X \subseteq t \mid X$ and $s \mid \overline{X} \subseteq t \mid \overline{X}$.
- If S' and S'' are normal ω_1 -trees satisfying (1) (3) from § 1 then $S' *_X S''$ is also such a tree.
- If S' and S'' are normal (sequential) ω_1 -trees where S' is Aronszajn and $X \subseteq \omega_1$ has a power \mathfrak{S}_1 , then $S' *_X S''$ is Aronszajn tree.

Let $S_0 = \{s \in \mathfrak{S} \cup \omega \mid \{\alpha \mid s_\alpha \neq 0\} \text{ is finite}\}$. It is clear that S_0 is a normal ω_1 -tree of sequences (i.e. that it satisfies (1) — (3) from § 1). The following Lemma (whose proof uses the *pressing down Lemma (PDL)*: If f is pressing down on a stationary set (in ω_1), it is constant on a stationary set) was first proved in [Ku 2].

Lemma 3.1. Every uncountable initial part of the tree S_0 contains an ω_1 -branch.

Proof: Let $U\subseteq S_0$ be an initial part of S_0 . For each $\alpha<\omega_1$, $\lim{(\alpha)}$, let $s_\alpha\in U$ be arbitrary. For each $\alpha<\omega_1$, $\lim{(\alpha)}$, define $f(\alpha)=$ the largest $\beta<\alpha$ such that $s_\alpha(\beta)\neq 0$, or else $f(\alpha)=0$ if no such β exists. Then $f:\{\alpha<\omega_1|\lim{(\alpha)}\to\omega_1$ is regressive, so by PDL we can find stationary set $C\subseteq \{\alpha<\omega_1|\lim{(\alpha)}\}$ such that $f''(C)=\{\beta_0\}$ for some fixed β_0 . It follows immediately (using again PDL) that there must be a stationary $D\subseteq C$ such that $s_\alpha \cap (\beta_0+1)=s_\beta \cap (\beta_0+1)$ for every $\alpha, \beta\in D$, i.e. $\alpha, \beta\in D$ and $\alpha<\beta$ implies $s_\alpha\subseteq s_\beta$. Hence $\{s_\alpha\mid\alpha\in D\}$ determines an ω_1 -branch of U.

Up to the end of this section $S\subseteq \underline{\omega}_1 \omega$ will be a fixed Aronszajn tree of sequences (i.e it will satisfy (1) — (3) from § 1). Following [Ga Sp] for every subset $X\subseteq \omega_1$ we define $T(X)=S*_XS_0$. Let us mention also a well known fact that $\alpha=\omega^\beta$ has the property that $\gamma<\alpha$ implies $\gamma+\alpha=\alpha$.

Lemma 3.2. Let $X, Y \subseteq \{\alpha < \omega_1 \mid \alpha = \omega^\beta \text{ for some } \beta\}$ be disjoint and uncountable and let $x \in T(X)$ and $y \in T(Y)$. Then $T(X)^X$ and $T(Y)^Y$ have no isomorphic uncountable initial parts.

Proof: Let us assume the contrary, i.e. that there exist $x \in T(X)$ and $y \in T(Y)$, such that $T(X)^x$ and $T(Y)^y$ have isomorphic uncountable initial parts A and B, respectively. Assume also that $|A \cap R_{\delta}T(X)| > 1$ or $|B \cap R_{\delta}T(Y)| > 1$ implies $\delta > l(x)$, l(y).

Let $A_0 = \{s \mid \overline{X} \mid s \in A\}$; then $A_0 \cup \{s \in S_0 \mid s \subseteq x \mid \overline{X}\}$ is an uncountable initial portion of S_0 According to Lemma 3.1. there exists an ω_1 -branch $a \subseteq A_0 \cup \{s \in S_0 \mid s \subseteq x \mid \overline{X}\}$. Let $A_1 = \{s \in A \mid s \mid \overline{X} \in a\}$.

We can easily check that A_1 is an uncountable initial part of $T(X)^x$ and that every node N of (A_1, \subseteq) is of power 1 whenever the height of N (in T(X)) is $\delta+1$ and $\delta \notin X$.

Since A_1 is an uncountable initial portion of $T(X)^x$ and A and B are isomorphic, there exists an uncountable initial part B_1 of the tree $T(Y)^y$, so that A_1 and B_1 are isomorphic. Let $B_2 = \{s \mid \overline{Y} \mid s \in B_1\}$. Then $B_2 \cup \{s \in S_0 \mid s \subseteq y \mid \overline{Y}\}$ is an uncountable initial part of S_0 . According to Lemma 3.1. there exists an ω_1 -branch $b \subseteq B_2 \cup \{s \in S_0 \mid s \subseteq y \mid \overline{Y}\}$. Let $B_3 = \{s \in B_1 \mid s \mid \overline{Y} \in b\}$, then B_3 is an uncountable initial part of $T(X)^y$. Let us prove that B_3 is totally ordered, contradicting the fact that $T(Y)^y$ is an Aronszajn tree.

Let us assume the contrary, i.e. that there exist $s, t \in B_3$ so that neither $s \subseteq t$ nor $t \subseteq s$. Let $\beta < l(s)$, l(t) be the least ordinal with property $s_\beta \neq t_\beta$ and let $u = s \upharpoonright (\beta + 1)$ and $v = t \upharpoonright (\beta + 1)$. Let u' and v' be elements of A_1 , such that h(u') = u and h(v') = v, where $h: A_1 \to B_1$ is an isomorph sm. This means that there is an ordinal $\delta < \omega_1$, so that u', $v' \in A_1 \cap R_{\delta+1} T(X)$, $u' \upharpoonright \delta = v' \upharpoonright \delta$ and $u' \neq v'$. According to the property of the set A_1 , $\delta \in X$ must hold. According to the above assumpt on $\delta > l(x)$, l(y), which, according to $\delta \in X \subseteq \{\alpha < \omega_1 | \alpha = \omega^{\beta} \text{ for some } \beta\}$, means that the height of u' and v' in the tree $T(X)^*$ equals $\delta + 1$. So, the height of u and v in the tree $T(Y)^*$ equals $\delta + 1$, which, according to $\delta = \omega^{\alpha}$, for some α and $\delta > l(y)$, means that $l(u) = l(v) = \delta + 1$. So, we have two points $u \neq v \in B_3$ with properties $l(u) = l(v) = \delta + 1$, $u \upharpoonright \delta = v \upharpoonright \delta$ and $\delta \in Y$ (for $\delta \in X$ and $X \cap Y = \emptyset$).

Since $\delta \oplus Y$, $u \mid Y = v \mid Y$, and since $u \mid \overline{Y}$ and $v \mid \overline{Y}$ are elements of b of the same height it follows that $u \mid \overline{Y} = v \mid \overline{Y}$. This means that u = v, contrary to the fact that $u \neq v$. So, B_3 has no incomparable elements, what was to be proved.

Theorem 3.3. There exist 2^{\aleph_1} mutually non-isomorphic totally rigid Aronszajn trees.

Proof: Let $\{X_{\delta} | \delta < \omega_1\}$ be a disjoint collection of uncountable subsets of $\{\alpha < \omega_1 | \alpha = \omega^{\beta} \text{ for some } \beta\}$. Let $\mathcal{T} = \{T(X_{\delta}) | \delta < \omega_1\}$ be the corresponding family of Aronszajn trees. Considering trees isomorphic to them we assume that $T(X_{\delta}) \cap T(X_{\delta'}) = \emptyset$, for $\delta < \delta' < \omega_1$.

We shall construct inductively a sequence T_{α} , $\alpha < \omega_1$ of Aronszajn trees, so that T_{α} is an initial part of T_{β} , for every $\alpha < \beta < \omega_1$.

Let $T_0 = T(X_0)$. To every $x \in R_0$ T_0 (however, there is only one) we correspond a tree $T(x) \in \mathcal{T} - \{T_0\}$, so that this correspondence is one-to-one and minimal. Let $\mathcal{T}_1 = \{T(x) \mid x \in R_0$ $T_0\}$. Let

$$T_1 = Lt_{R_0} T_0 (T_0, \mathcal{T}_1),$$

be a tree obtained by the colateral intercalation of T(x) in place of $x \in T_0$, for every $x \in R_0$ T_0 (see § 1). It is clear that T_1 is an Aronszajn tree and that T_0 is its initial part.

Let us assume that $\alpha < \omega_1$ and that T_{β} , $\beta < \alpha$ have been constructed already. If α is a limit ordinal, then we put

$$T_{\alpha} = \bigcup \{T_{\beta} \mid \beta < \alpha\} (\leqslant T_{\alpha} = \bigcup \{\leqslant T_{\beta} \mid \beta < \alpha\}).$$

Then T_{α} is Aronszajn tree and T_{β} is an initial part of T_{α} , for every $\beta < \alpha$.

Let $\alpha = \beta + 1$. For every $x \in R_{\beta} T_{\beta}$ let us choose some $T(x) \in \mathcal{T}$, which we haven't used before, so that this correspondence would be one-to-one and minimal. Let

$$T_{\alpha} = Lt_{R_{\beta}T_{\beta}}(T_{\beta}, \mathcal{T}_{\alpha}),$$

where $\mathcal{T}_{\alpha} = \{T(x) \mid x \in R_{\beta} T_{\beta}$. We omit the simple proof that T_{α} is an Aronszajn tree and that T_{β} (and T_{δ} , $\delta < \beta$) is an initial part of T_{α} . Let

$$T\omega_1 = \bigcup \{T_\alpha \mid \alpha < \omega_1\} \ (\leqslant = \leqslant T_{\omega_1} = \bigcup \{\leqslant T_\alpha \mid \alpha < \omega_1\}).$$

Then T_{α} is an initial part of T_{ω_1} , for every $\alpha < \omega_1$ according to the same fact for T_{β} and $T_{\beta'}$, $\beta < \beta' < \omega_1$.

By construction it is easy to show that $R_{\beta}T_{\beta}=R_{\beta}T_{\alpha}$, for every $\beta<\alpha<\omega_{1}$, whence $R_{\alpha}T_{\omega_{1}}=R_{\alpha}T_{\alpha}$, for every $\alpha<\omega_{1}$, which means that $T_{\omega_{1}}$ is a normal ω_{1} -tree (see § 1). Let us prove that $T_{\omega_{1}}$ is an Aronszajn tree. Let us assume the contrary, i.e. that $T_{\omega_{1}}$ has an ω_{1} -branch b. Let $x_{\alpha}\in b$ be the unique element of $b\cap R_{\alpha}T_{\omega_{1}}$, for every $\alpha<\omega_{1}$. If $\alpha<\omega_{1}$ is a limit ordinal then $x_{\alpha}\in R_{\alpha}T_{\omega_{1}}=R_{\alpha}T_{\alpha}$ and there exists $\beta<\alpha$, so that $x_{\alpha}\in T_{\beta}$. Let $h(\alpha)=\min\{\beta\mid x_{\alpha}\in T_{\beta}\}$. So, $h:\{\alpha<\omega_{1}\mid \lim(\alpha)\}\to\omega_{1}$ is regressive. So, (using PDL) there exists stationary $C\subseteq\{\alpha<\omega_{1}\mid \lim(\alpha)\}$ and $\beta<\omega_{1}$, so that $h''(C)=\{\beta\}$. This means that $x_{\alpha}\in T_{\beta}$, for every $\alpha\in C$. So, $\{x_{\alpha}\mid \alpha\in C\}$ is an uncountable chain of T_{β} , which is absurd since T_{β} is an Aronszajn tree. So, $T_{\omega_{1}}$ is an Aronszajn tree.

Let us prove now that T_{ω_1} is totally rigid. Let us assume the contrary, i.e. that there exist $x \neq y \in T_{\omega_1}$, so that $T_{\omega_1}^x$ and $T_{\omega_1}^y$ are isomorphic. We may assume $x \parallel y$. Let $\pi: T_{\omega_1}^x \to T_{\omega_1}^y$ be an isomorphism.

Let $\beta = \gamma(x)$, then the tree $T(x) \in \mathcal{T}_{\beta+1}$ is colaterally intercalated in the place of $x \in R_{\beta} T_{\beta}$. This means that $T(x) \subseteq T_{\beta+1}^x \subseteq T_{\omega_1}^x$ and that $U = \{x\} \cup T(x)$ is an initial part of the tree $T_{\omega_1}^x$. Hence $\pi''(U)$ is an initial part of the tree $T_{\omega_1}^y$. For every limit ordinal $\alpha < \omega_1$, $\alpha > \gamma(y)$ we choose $y_{\alpha} \in \pi''(U) \cap R_{\alpha} T_{\omega_1}$. Since $R_{\alpha} T_{\omega_1} = R_{\alpha} T_{\alpha}$, we know that $y_{\alpha} \in R_{\alpha} T_{\alpha}$. According to the definition

of T_{α} for limit $\alpha < \omega_1$ we know that there exists a least $\beta < \alpha$, such that $y_{\alpha} \in T_{\beta}$. Moreover, in case $\beta > 0$, $\beta = \delta + 1$ for some δ . If this last case holds, then from

$$T_{\beta} = Lt_{R_{\delta}T_{\delta}}(T_{\delta}, \mathcal{J}_{\beta})$$

we know that there exists a unique $z_{\alpha} \in R_{\delta} T_{\delta}$, so that $y_{\alpha} \in T(z_{\alpha})$. Let β be denoted by $i(\alpha)$. By this we have a regressive mapping $i: \{\alpha < \omega_1 \mid \lim(\alpha) \land \land \alpha > \gamma(y)\} \rightarrow \omega_1$. So, there exists a stationary $D \subseteq \{\alpha < \omega_1 \mid \lim(\alpha) \land \alpha > \gamma(y)\}$ and $\beta_1 < \omega_1$, so that $i''(D) = \{\beta_1\}$. Moreover, we assume that in case $\beta_1 > 0$, $z_{\alpha} = z \in R_{\delta_1} T_{\delta_1}$, for every $\alpha \in D$, where $\beta_1 = \delta_1 + 1$. According to the definition of the mapping i we have that $\{y_{\alpha} \mid \alpha \in D\} \subseteq T_{\beta_1}$, where in case $\beta_1 > 0$ we have $\{y_{\alpha} \mid \alpha \in D\} \subseteq T(z)$.

Let us consider the case $\beta_1 > 0$. We can assume that there exists a $\nu \in T(z)$, so that $y < \nu \le y_{\alpha}$, for every $\alpha \in D$.

Let $V = \{v' \mid y \leqslant v' \leqslant v\} \cup T(z)^v$ and let $B = V \cap \pi''(U)$, then B is an uncountable initial part of $T_{\omega_1}^v$, for it contains $\{y \mid \alpha \in D\}$. Let $u \in T(x)$ be such that $\pi(u) = v$ and let $A = T(x)^u \cap \pi^{-1}(B)$, then A and $B - \{v' \mid y \leqslant v' < v\}$ are isomorphic uncountable initial parts of the trees $T(x)^u$ and $T(z)^v$. However, this contradicts Lemma 3.2., for $x \neq z$ (since $x \mid y$ and $z \leqslant y$ or $y \leqslant z$) implies that $T(x) = T(X_\delta)$ and $T(z) = T(X_{\delta'})$ for $\delta \neq \delta'$. In case $\beta_1 = 0$ we get a contradiction similarly. This finishes the proof that T_{ω_1} is a totally rigid Aronszajn tree.

The tree T_{ω_1} could be constructed in the above manner without using all the elements of \mathcal{T} , but only the elements of some uncoutable subfamily $\{T(X_\delta) \mid \delta \in F\}$, $F \subseteq \omega_1$, $\mid F \mid = \aleph_1$. Let us denote by $T_{\omega_1}^F$ the tree so obtained. Let F and G be arbitrary uncoutable and different subsetts of ω_1 . Let us prove that the trees $T_{\omega_1}^F$, $T_{\omega_1}^G$ are nonisomorphic. Let, for example $F - G \neq \varnothing$ and let $\delta \in F - G$. The tree, $T(X_\delta)$ has been used in the construction of the tree $T_{\omega_1}^F$, which means that there exist $\beta < \omega_1$ and $x \in R_\beta T_\beta^F$, so that $T(x) = T(X_\delta) \subseteq T_{\beta+1}^F \subseteq T_{\omega_1}^F$. If we assume the contrary, i.e. that there exists an isomorphism $\pi: T_{\omega_1}^F \to T_{\omega_1}^G$, then, repeating the arguments from above, we can find $T(z) \subseteq T_{\omega_1}^G$, $z' \in T(z)$ and $z' \in T(x)$, so that $T(x)^{z'}$ and $T(z)^{z'}$ have isomorphic uncountable initial parts which is in contradiction with Lemma 3.2,, since $T(z) = T(X_{\delta'})$ for some $\delta' \neq \delta$ ($\delta' \in G \oplus \delta$). This proves that

$$\{T_{\omega_1}^F \mid F \subseteq \omega_1 \text{ and } \mid F \mid = \aleph_1\}$$

is a family of power 2^{\aleph_1} of mutually nonisomorphic totally rigid Aronszajn trees, which finishes the proof of Theorem 3.3.

Remark. Obviously, the Theorem 3.3. is transferrable for the case of other regular cardinals k for which there exist k-Aronszajn trees.

To the above Jech's problem we could give an answer in an other direction also. Let us indicate some definitions. If T is an ω_1 -tree then for $C \subseteq \omega_1$, $T \upharpoonright C = \bigcup \{R_\alpha T \mid \alpha \in C\}$ is a tree under the restriction of the partial ordering of T. A function $f: T \to T'$ is an *embedding* of the tree T into the tree T' iff f is one-to-one and order preserving $x < y \Leftrightarrow f(x) < f(y)$. Using some extensions of arguments of the proof of Theorem 3.3 we can prove the following.

Theorem: There exists a family T_{α} , $\alpha < 2^{\aleph_1}$ of ω_1 -trees such that: If C is a closed unbounded subset of ω_1 , f an embedding of $T_{\alpha} \upharpoonright C$ into $T_{\beta} \upharpoonright C$ then $\alpha = \beta$ and f is trivial.

The following theorem is a final supplement to Theorem 2.2.

Theorem 3.4.

- 1. There exists a rigid Aranszajn tree.
- 2. There exists an Aronszajn tree T, such that $\sigma(T) = 280$.
- 3. There exists an Aronszajn tree T, such that $\sigma(T) = 2^{\aleph_1}$.

Proof: Statement 1 follows from the Theorem 3.3. For the proof of 3 see [Je 2] p. 70. Consider the following tree T':

where T is some rigid Aronszajn tree. Obviously, $\sigma(T') = 2$. This proves 2.

REFERENCES

- [De Jo] K. J. Devlin and H. Johnsbraten, *The Souslin Problem*, Springer Lecture Notes 405 (1974).
- [Ga Sp] H. Gaifman and E. Specker, Isomorphism Types of Trees, Proc. Amer Math. Soc. 15 (1964), 1-7.
- [Je 1] T. J. Jech, Trees, Journal Symb. Log c 36 (1971), 1—14.
- [Je 2] T. J. Jech, Automorphisms of ω_1 -trees, Trans. Amer. Math. Soc. 173 (1972), 57—70
- [Ku 1] D. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935) 1-138.
- [Ku 2] D. Kurepa, On regressing functions, Zeitschrift für Math. Logik und Grundlagen der Math. 4 (1958), 148-157.
- [To] S. Todorčević, Some results in set theory. I, Notices of the Amer. Math. Soc. 26: 4 (1979), A-390.

Stevo Todorčević Matematički institut 11000 Beograd Knez Mihailova 35