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RIGID ARONSZAJIN TREESY
by ’

Stevo Todorlevié

Abstract. We shall construct 2%, mutually nonisomorphic totally rigid Aronszajn
trees. So, in particular, we get a positive answer to a Jech problem.

1. Introduction and definitions. We work in ZFC set theory, and adopt
~ the usual notations and conventions. Terminology on trees is as in [Ku 1]
and [Je2].

A tree is any (partially) ordered set (T, <,), such that for every xCT
the set (-, x): ={ycT|y<,x} is well ordered. The height v (x) of a point x=T
is the order type of the set (-, x). Let « be any ordinal, then the o Jevel
of the tree is defined by R, T={xcT |y (x)=a}.

Let yT=min{«|R,T= o }; yT is the height of the tree T (we shall often
write T instead of (7, <7)). With || (more precisely ||;) we shall indicate the
relation of noncomparability in the tree 7. A totally < g-ordered subset of T
is called a chain of the tree 7. A maximal chain is called branch; o-branch
is any branch whose order type equals a. A set ACT is called antichain of
the tree T provided x|y, for every x, yE A, x#y. A set XCT is an initial
part of T, if (-, x)CX, for every x&X. A node of the tree T is every equiva-
lence class wrt the relation ~ defined by: x~y iff (-, x)=(-, ). For every x&T
let {ycT|y>,x} be denoted by T*; it will be considered also as a tree wrt
the order <(;N(T%).

Let ACT be any subset, Let .7 ={(T(x), <,)|xE4} be any family of
pairwise disjoint trees, so that TNT(x)= @, for every x&A. We define the
colateral intercalation (see “‘intercalation latérale” [Ku 1] p. 101), yielding a new
tree S=Lt,(T, ;7 ) so that S=T U{T(x)| x& A} where < is defined by:

() <gPT?=<; and < PT2(x)=<,, for every xEA;

1) (-5 x]p<sgT(x) and (S—(-, x1) || T (%), for every xEA.

1) The main result of this paper wes presented 1978:01:06 and is contained in § 7
pp. 71—79 of the author’s Master Thesis Drveta [Trees] Beograd 1978 pp. 106, and which

was defended on the University of Belgrade in 1978. I wish. to express my gratitude to Professor
P. Kurepa for supervising this research.
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Let us remark that 7" is an initial part of S and that T is a subtree of
the tree S.

A normal o,-tree is defined as in [Je 2] p. 58. Let Lo = {*0|a<<w,} be
the set of all sequences s whose domain is a countable ordinal and whose
values are the natural numbers. Let /(s)=dom(s). Any normal o -tree can be
represented by a set TC @ (ordered by the natural ordering of ¢ w), which
satisfies the following conditions:

(1) for each s&T and each ncow, 5 ncT,

(2) for each s&T and each a<<w, there is tC7T such that /(f)=o and
tCs or ts,

(3) for each a<w,, T is at most countable.

An isomorphism of two trees is a one-to-one mapping of T, onto T,
which preserves the partial ordering. An automorphism of T is an isomorphism
of T onto itself. A tree T is called rigid if the only automorphism of T is the
identity. T is said to be fotally rigid if for no x#y&T, T* and T” are
isomorphic. By o(7) we denote the cardinality of the set of all automor-
phisms of T ([Je2] p. 59). A Suslin tree is any normal ,-tree with mno
uncountable antichain; an Aronszajn tree is any  normal ,-tree with no
uncountable chain; a Kurepa tree is any normal o -tree having at least N,
w,-branches. '

: 2. Known results and a Problem. Jech [Je 2] has proved that if T is a
normal ,-tree, then o(7) is either finite, or 2% <o (1)< 2% and o (1N =c (T).
He has also proved that if 7 has no Suslin’ subtree then either o (7) is finite
or 6(T)=2% or ¢(T)=2% and that it is consistent that there is a Suslin
tree T with o(T) of arbitrary prescribed cardinality k betwen 2% and 2%
provided k% =k.

Aronszajn, Kurepa and Suslin trees are main kinds of normal o, -trees.
The following two theorems give a summary of the known results on these
trees with respect to their existence, isomorphism and automorphism. ’

Theorem 2.1.
(Aronszajn) There exists an Aronszajn tree.
(Gaifman-Specker) There exist 28t non-isomorphic Aronszajn trees.
(Jech, Tennernbaum) It is consistent that a Suslin tree exists.
(Jech) It is consistent that there are 2§, non-isomorphic Suslin trees.

(Lévy, Rowbottom, Stewart) It is consistent that a Kurepa tree ‘exists.

AN O i ol

(Jech) It is consistent that there are 2%: non-isomorphic Kurepa trees.

A proof of 1 is in [Kul] p. 96,; a proof of 2 is in [Ga Sp]; proofs of 3
and 5 could be found, e.g., in [Jel]; proofs of 4 and 6 are in [Je 2].
Statements 3,4, 5 and 6 hold also in L according to Jensen, Jech Solovay
and Jech, respectively. ‘
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Theorem 2.2. It is consistent that:

1. (Jensen) There exists a rigid Suslin tree:
2. (Jensen) There exists a Suslin tree 7, such that ¢ (7) =280,
3. (Jensen) There exists a Suslin tree 7, such that o (T)=28:,
(Jech) There exists a rigid Kurepa tree. '
(Jech) There exists a Kurepa tree T, such that o (7T)=2%,
(Jech) There exists a Kurepa tree T, such that o (T)=2%:,
For proofs of 1, 2, 3 see [DeJo]; for proofs of 4, 5, 6 see [Je 2]. Moreover,
all these statements hold in L.

After the results in Theorem 2.2. Jech (see [Je 2, Problem] p. 70) raises
the question as to whether in ZFC there exists a rigid normal o -tree. Here
we shall prove that the answer to this problem is affirmative. Namely, we
shall construct 2% mutually non-isomorphic totally rigid Aronszajn trees. The
main result was announced in [To].

A

3. Rigid Aronszajn trees. We recall some definitions from. [Ga Sp]. Let s
be a sequence and X a set of ordinals, then §|X=(Syp .-, 5 g - - )ocB<l(5),
- where X = {oco,..., g, .} s+ - < and s =(S)u<i(s) * SIX 1s
defined by s{((s)— X) If s]X s’ and SJX~S then we write s=25"x,s".
If S and S" are sets of sequences then we put S'#3S" ={sxy8"|s'€S’
and 5" &S}

“The following properties folow easily (see [GaSp] p. 4.):
— If 5, t&S8"%,S” then sCr iff s|XCr|X and s|x Ct|Y.

— If §" and S” are normal o -trees satisfying (1) — (3) from § 1 then S'x,S"
is also such a tree.

— If §" and §” are normal (sequential) w,-trees where S” is Aronszajn and XC o,
has a power N, then §'%,S" is Aronszajn tree.

Let S,={s&% o |{a|s, 0} is finite}. It is clear that S, is a normal
o-tree of sequences (i.e. that it satisfies (1) — (3) from § 1). The following
Lemma (whose proof uses the pressing down Lemma (PDL): If f is piessing
down on a stationary set (in o), it is constant on a stationary set) was
first proved in [Ku 2].

Lemma 3.1. Every uncountable initial part of the tree S, contains an
o,-branch.

Proof: Let UCS, be an initial part of S,. For each a<w,, lim(x),
let s,&U be arb:trary. For each a<w,, lim(«), define f(a)=the largest B<<a
such that s, ()50, or else f(«) = 0 if no such @ exists. Then f {a<<o, |lim () > e,
is regressive, so by PDL we can find stationary set CC{x<o,|lim(a)} such
that [ (C)={B,} for some fixed B,. It follows immediately (using again PDL)
that there must be a stationary DCC such that s, M(B,+1)=s M(By+ 1) for
every «, B& D, ie. «, B& D and «<<B implies s, Cs;. Hence {s, |« €D} determines
an o,-branch of U.
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Up to the end of this section SC% w will be a fixed Aronszajn tree of
sequences (i.e it will satisfy (1) — (3) from § 1). Following [Ga Sp] for every
subset XC o, we define 7' (X)=Sx,S, Let us mention also a well known fact
that « =P has the property that y<<o implies y-+o=o.

Lemma 3.2. Let X, YC{a<ow,|a=wf for some B} be disjoint and
uncountable and let x&7T'(X) and y&T(Y). Then T(X)*¥ and T (Y)Y have no
isomorphic uncountable initial parts.

Proof: Let us assume the contrary, i.e. that there exist x&T (X)
and yc<T(Y), such that T(X)* and T(Y)” have isomorphic uncountable
init'al parts 4 and B, respectively. Assume also that |ANR,T(X)|>1 or
| BO\Rs T(Y){>1 implies 3>1(x), {().

Let A4y={s|Xx|sEA4}; then 4,U{s&S,|sCx|x} is an uncountable initial
portion of So According to Lemma 3.1. there exists an w,-branch aC A,\J
U{sES, |sCxlx} Let 4, ={scd|s|xEa}.

We can easily check that 4, is an uncountable initial part of T (X)* and
that every node N of (4,, C)is of power 1 whenever the height of N (in T (X))
is 3+1 and 3¢ X.

Since A4, is an uncountable initial portion of T(X )* and 4 and B are
isomorphic, there exists an uncountable initial part B, of the tree T'(Y)”, so
that 4, and B, are isomorphic. Let B,={s|y|s&B,}. Then B,U{s<S,|sCy Y}
is an uncountable initial part of S,. According to Lemma 3.1. there exists an
‘o,;-branch 5CB,U{s=S,|sCy| v} Let B,={s&B,|s|y &b}, then B, is an
uncountable initial part of T(X)”. Let us prove that B, is totally ordered,
contradicting the fact that T(Y)” is an Aronszajn tree.

Let us assume the contrary, i.e. that there exist s, #&B; so that neither
sCt nor tCs. Let p<<i(s), I(¢) be the least ordinal with property s,#t, and
let u=spr(P+1) and v=¢pP(P+1). Let »' and v be elements of A, such
that A(w')=u and A(v')=v, where h.4,-> B, is an isomorph'sm. This means
that there is an ordinal 3<e,, so that o', VEA,NR,  T(X), ' 3=V 3
and u'#v'. According to the property of the set 4,, 3 X must hold. According
to the above assumpt.on §>1(x), /(y), wh'ch, according to §&XC {a <o, |a=0?
for some B}, means that the height of ' and v in the tree T (X)* equals 3+ I.
So, the height of u and v in the tree T(Y)” equals 3+ 1, which, according
to =% for some « and 3>1(y), means that 1 (u)=1()=38+1. So, we have
two points uz#vEB, with properties [(t)=1()=8+1, u8=v[3J and 3¢Y
(for 3&X and XﬁY ).

Since 3¢Y, u|Y=v!|Y, and since u} y and v|y are elements of b of
the same height it follows that |y =v|y. This means that u=v, contrary to
the fact that wsv. So, B, has no incomparable elements, what was to
be proved.

Theorem 3.3. There exist 2% mutually non-isomorphic totally rigid
Aronszajn trees.

Proof: Let {X;|3<w,} be a disjont collection of uncountable subsets
of {a<w,|a=w? for some B}. Let 7 ={T(X;)|8<w,} be the corresponding
family of Aronszajn trees. Considering trees isomorphic to them we assume
that T(Xp)NT (Xs)= o, for 3<d <w,.
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We shall construct inductively a sequence T,, a<<e, of Aronszajn trees,
so that T, is an initial part of T, for every a<f<c;. :

Let T,=T(X,). To every x&R,T, (however, there is only one) we
correspond a tree T{x)&T —{T,}, so that this correspodence is one-to-one
and minimal. Let 7, ={T(x)|xER, T,}. Let

Tl = LtRo Ty (Tm 71)’

be a tree obtained by the colateral intercalation of T (x) in place of x& T,
for every xCR, T, (see § 1). It is clear that T, is an Aronszajn tree and that T,
is its initial part.

Let us assume that o<, and that T,, B<a have been constructed
already. If o is a limit ordinal, then we put

T, = U {T, | B<a}(Sra = U{<Tp| B<er)).

Then T, is Aronszajn tree and T, is an initial part of T,, for every f<a.

Let « =B+ 1. For every x&ER,T, let us choose some T(x)C7, which
we haven’t used before, so that this correspondence would be one-to-one
and minimal. Let

Toc =LtR@ Tp (TB’ gzx)’

where T, ={T(x)| xER, T,. We omit the simple proof that T, is an Aronszajn
tree and that T, (and Tj, 8<<B) is an initial part of T,. Let

Ter = U{T,ja<o} (<= <To = U{T, [a<o,)).

Then T, is an initial part of T,,, for every a<<w, according to the same fact
for T, and Ty, B<B <o,

By construction it is easy to show that R,T,=R,T,, for every B<<a<c,,
whence R, T, =R,T, for every a<ew;, which means that T,, is a normal
©,-tree (see § 1). Let us prove that T, is an Aronszajn tree. Let us assume
the contrary, i.e. that T,, has an wg-branch b. Let x,&b be the unique
element of AM\R,T,,, for every a<w, If a<ew, is a limit ordinal then
x,ER, Tw, =R, T, and there ex'sts B<<a, so that x, & T,. Let A (o) = min {B{x, & T,}.
So, h:{a<e,|lim(x)} > ©, is regressive. So, (using PDL) there exists statio-
nary CC{a< o, |lim(«)} and B<e,, so that #’" (C)={R}. This means that x, T,
for every «a =C. So, {x,|a&C} is an uncountable chain f Ty, which is absurd
since T, is an Aronszajn tree. So, T,, is an Aronszajn tree.

Let us prove now that T,, is totally rigid. Let us assume the contrary,
i.e. that there exist x#y&T,,, so that Ty, and T, are isomorphic. We may
assume x||y. Let m: T4, — T4, be an iscmorphism.

Let B=vy(x), then the tree T (x)ET,,, is colaterally intercalated in the
place of x&R, T, This means that T(x)C T4, CTy, and that U={x}UT(x)
is an initial part of the tree Tw,. Hence =’/ (U) is an initial part cf the

tree Ty, For every limit ordinal a<w,, «>7(¥) we cheose y, &’ (UYNR, Te,.
Since R,T.,, =R,T,, we know that y,&ER,T,. According to the cefinition
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of T, for limit « <, we know that there exists a least 3<C«, such that y,€T,.
Moreover, in case 3>0, B=3+1 for some 3. If this last case holds, then from

TB ':LtRa Ts (TE’ gﬂ) »

we know that there exists a wunique z,&R;T;, so that y, &T(z,). Let B be
denoted by i(x). By this we have a regressive mapping i:{a<<o,|lim (@) A
ANa>y (M)} — w,. So, there exists a stationary DC{a<o,|lim (o) Aoa>v (»)}
and B, <w,, so that i (D)={B,}. Moreover, we assume that in case $3,>0,
z,=zC Ry, Ts,, for every oD, where B,=3,-+1. According to the definition
of the mapping 7/ we have that {y,|«&D}CTp,, where in case B,;>0 we
have {y, |« €D} T(z).

Let us consider the case f,>(0. We can assume that there exists a y& T (z),
so that y<v<{y,, for every a&D.

Let V={'|y<v'<v}UT (2)" and let B=V ="' (U), then B is an uncoun-
table initial part of T%,,, for it contains {y|« & D}. Let u&T(x) be such
that w()=v and let A=T(x)*Nr ' (B), then 4 and B—{¥' | y<v'<v} are
isomorphic uncountable initial parts of the trees T (x)* and T'(z)*. However,
this contradiicts Lemma 3.2., for x5z (since x||y and z<y or y<z) implies
that T(x)=T(X,) and T(z2)=T(Xy) for 8+#9. In case B,=0 we get a
contrad ction similarly. This finishes the proof that T, is a totally rigid
Aronszajn tree.

The tree T, could be constructed in the above manner without using all
the elements of 7, but only the elements of some uncoutable subfamily
{T(X;)|3<F}, Flo,, |F|=¥,. Let us denote by TY the tree so obtained.
Let F and G be arbitrary uncoutable and different subsetts of w;. Let us prove
that the trees T, (fl, T Sl are nonisomorphic. Let, for example F—G3# 2 and
let 3&F—G. The tree. T(X;) has been used in the construction of the

tree T, which means that there exist B<w, and xER, Ty, so that T(x)=
=T (XS)QTSFHQ T, 51. If we assume the contrary, i.e. that there exists an
isomorphism n:T51_> :rfjl, then, repeating the arguments from above, we can
find T(2)CTS,, 2 €T (z) and x' € T(x), so that T (x)* and T (z)* have isomorphic
uncountable initial parts which is in contradiction with Lemma 3.2,, since
T(z2)=T(Xy) for some &8 £3 (3’ ©GHJ). This proves that

{T5,|FCo, and |F|=¥}

is a family of power 2%t of mutually nonisomorphic totally rigid Aronszajn
trees, wh.ch finishes the. proof of Theorem 3.3.

Remark. Obviously, the Theorem 3.3. is transferrable for the case of
other regular cardinals & for which there exist k-Aronszajn trees.

To the above Jech’s problem we could give an answer in an other
direction also. Let us indicaie some definitions. If T is an o,-tree then for
CCo, TIC=U{R,T|aEC} is a tree under the restriction of the partial
ordering of T. A function f:T - T’ is an embedding of the tree T into the
tree T’ iff f is one-to-one and order preserving x<y < f(x)<<'f(»). Using
some extensions of arguments of the proof of Theorem 3.3 we can prove
the following.
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Theorem: There exists a family T,, a<2N' of w -trees such that: If C
is a closed unbounded subset of v, f an embedding of T, MC into T, C then o =8
and [ is trwvial.

The following theorem is a final supplement to Theorem 2.2.

Theorem 3.4.
1. There exists a rigid Aranszajn tree.
2. There exists an Aronszajn tree T, such that o (T)= 2%,
3. There exists dn Aronszajn tree T, such that o (T)=2%,

Proof: Statement 1 follows from the Theorem 3.3. For the proof of 3
see [Je 2] p. 70. Consider the following tree T”:

I T T ... o times
N\ | S
N4

where T is some rigid Aronszajn tree. Obviously, o(T’)=2 o, This proves 2.
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