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ON SYMMETRIC WORDS IN NILPOTENT GROUPS

Sava Krstié

Symmetric words (operations) in various groups were investigated by
E. Plonka ([2], [3], [4]). Most of the notions and notation we shall use are
from these Plonka’s articles.

Let r be a positive integer and S, the permutation group of the set {1, ..., r}.
A group word w=w(x,,..., x,) is called symmetric in the group G if

w@,...,a)=w(a,,...,a,)

for every a,,...,a, &G and every cES,.

Let Fg(x,,..., x,) be the group freely generated by X(s..., X, in the
smallest variety of groups containing G. Let 4 be the group of automorphisms
of Fg(x;,...x,) induced by the mappings

X=X 1<y,

where 6<S,. The set

SG)={wE F;(x, ..., X,)|w=aw for every aE 4}

is just the set of all symmetric words in G of r variables Xis oy X SO(G)
is a group. In [3] and [4] it is completely described in the case of a free
nilpotent G or any G of nilpotency class <3.

Clearly, the mapping 9;_;: S (G) > S (G) defined by
O W (X, X)) =W(xpy.or, X, 1)

is a homomorphism. Furthermore, Plonka has proved that d;_; is in fact an
isomorphism when G is a free nilpotent group of class n and r>n {3, and
also when G is any nilpotent group of class n<<3 and r>n ([4]). These results

suggest na‘uraly a more general problem. formulated in [4]: is the mapping o;_,
an isomorphism for any nilpotent group G and any r greater than the
nilpotency class of G? In this paper we give a positive solution to this
problem.
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Let us assume that G is a nilpotent group of class # and that r>n.

Let N be the frec nilpotent group of class n with generators x,..., x, and
let N’ be the subgroup of N generated by x;,..., x,_;. N’ is also a free
nilpotent group of class n and x,,...,x,_, are its free generators. There
exists a fully invariant subgroup U of N such that Fg(x,,..., x,) is isomor-
phic to N/U. Let us denote by ¢, 1<ti<r, the endomorphism of N induced
by the mapping
x;, for j=i
1, for j==i
and let

Wi =P e (W),
for any w&N and 1<<i, j, ..., k<<r. Clearly

Fg(xyy ..., X, )=N'[U,
where U’ ={w,|wc U}.

Finally, for any i, j, ... k{1, ..., r}, let us define a transformation Fy . &
of the group N as follows:

Fiw=w-w,_1,
Fjj...kw:Fi(F}...kw)'
In view of this definition we obtain that the equality
(1) W=F12...,W'F2...rW1'F3..
holds for every w& N.

Wy - Fow,_

-r

Lemma 1. Let w be an element of N; then

(a) F12...rW=1, )
(b) if w,cU for every ic{l,...,r}, then wU.

Proof (a) The identity F,, . ,w=1 follows immediately from the
statements 33.38. and 33.42. of [1]. We only note that without the assum-
ption r>n this identity may not be true.

(b) Using (a) of this Lemma and (1) we obtain
(2) w= Fz..

for every w& N.

From the definition of F; , and the fact that U is fully invariant it
easily follows that if ucU, then F; ,ucU. So, on the right hand side of
the equality (2) we have a product of the elements of U and hence wc U.

w e Fy  owye o Fow,

r—1°Wr

-r

Lemma 2. Let &, 1<{i<{r, be elements of N which satisfy the conditions

@, (1) =g () (mod U)

for every i, j&1,..., r}. Then there exists a w& N such that o, (w)=uf (mod U)
holds for every ic{l,..., r}.
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Proof. Let w be an element of N defined by

w=F, u-F, u* . Fu'a
For every i<{l, ..., r} we hawe
(3) W =F,, . ui-Fy  u- - Foui

From the definition of Fj; ., it follows that if u=v (mod U), then Fj  ,u=
=F;. .. v (mod U). So, from the assumptions v} =u}, we obtain

F"...k”SEF .kt (mod U)

ij ijeo
for every i,j,..., k, p, g={l,..., r}. Applying this to (3) gives
cp,.(w)zFZW,u'i . Fl.,.,ug- . -F,u:_l-ui (mod U).
Now (2) implies required congruence
¢;(w)=u' (mod V).
Theorem. Let G be a nilpotent group of class n. For every r>n the
mapping 0, is an isomorphism.
Remark. Examples from [4] demonstrate indispensability of the assum-

tion r>n.

Proof. We may regard 0,_; as the restriction of the mapping wU—w, U’
(from N/U into N’/U’) on the set S®(GYCN/JU. Since 0;—; is a homomorphism,
it remains to show that it is “1 —1" and ‘‘onto”.

1°0b 4 is «“I—1". Let u, v&N and uU, yUES® (G). Let also Or—y (uU) =
— 0/_{(vU). The latter condition is equivalent to
u,=v, (mod U")
and also to
u,=v, (mod U).

Hence, using the fact that U is fully invariant and that wlU, U cSC(G)
we can deduce

u;=v; (mod U)
for every i<{1,..., r}. Thus (uv‘l)i:uivi_IEU for every i. By the Lemma |
(b) we conclude
uU=vU.

2° 0y is “onto”. Let u’ =S¢ P (G), where u=u(x,, ..., x,-))EN'CN.
Let us define the elements '€ N by

U=u(Xyy ooy Xjmpy Xjgpp oo x,).
It is not difficult to see that from uU’' &S~V (G) it follows that
®; (uf)chj(u") (mod U)
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holds for every i, j&{l,...,r}. Now we can apply Lemma 2 which assures
the existence of a w&N such that

o;(w)=u' (mod U)

It remains to prove that wU& S (G).

Let « be an automorphism from A4; then aw=w(x,,...,x;) for a
certain permutation ¢<S,. Hence,

@W);=W(Xas -« 5 Xo(imrps Ly Xo(ugr - v+ s Xop)s

where 6j=1i; and further

(o W)iEuj(xaly v XaGo1)s X1y -+ - > Xor)
=U(Xgys - o5 Xoij1: Xaijans -« - » Xap)
=UX ooy Xi_1s Xjpgsr oo %)
= (mod U)

Applying this congruence we obtain
%0 (w)~) = w, (W)~ = ()~' =1 (mod U)
for every ic{l,...,r}. Now from Lemma 1(b) we deduce
w=aw (mod U)

Since this is true for every a4, we conclude that wU is an element of S® (G).
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