ON SOME INTERCALATIONS IN ORDERED SETS*

Kurepa Đuro

(Received, October 1, 1979)

0:0. In doctoral Thesis (Kurepa, D. 1939) were considered various extensions and intercalations, in ordered sets, among other maximal ones (§ 3: VII, § 4, § 10:4, 11:5). In this connexion there are many works by Krasner, Dokas,... on "Kurepa completions", semi-reals...

In Kurepa [1963] $n^{\circ} 4$, $n^{\circ} 6$ the following two intercalation conditions for any ordered set (O, \leq) were published:

- 0:1. Condition $C(\alpha)$: Any ordered subset of cardinality $< \aleph_{\alpha}$ admits in the set an extension in every direction in the sense that for any $X \subset O$ such that $|X| < \aleph_{\alpha}$ and for any ordered set X_0 such that $X_0 \supset X$, $X_0 \setminus X = \{x_0\}$ (irrespective whether $x_0 \in O$ holds or not) there exists a point $p \in O$ such that the identity mapping on X plus the mapping $x_0 \mapsto p(x_0) = p$ be an isomorphism between the ordered sets $X_0 = X \cup \{x_0\}$ and $X \cup \{p\}$.
- 0:2. *n*-intercalation (or $\equiv I_1(n)$) (*n* any given cardinal number). For any 3-un (\equiv ordered triplet) (A, B, C) of subsets of O, each of cardinality < n, the conditions

$$(0:3) A < B and B || C$$

imply the existence of a point p := p(A, B, C) in O such that

$$(0:4) A$$

Consequently, the subsets A, B, C are in the left - half - cone $O(\cdot, p) := \{x \cdot \cdot \cdot x \in O, x < p\}$ of (O, \leq) , in the right half cone $O(p, \cdot) := \{x \cdot \cdot \cdot x \in O, p < x\}$ and in the complement of the p-cone $O[p] := \{x \cdot \cdot \cdot x \in O, x \leq p \lor x \geqslant p\}$, respectively.

Since the requested point p in the n-intercalation condition satisfies (0:4) one has necessarily

$$0 A \cap C = \emptyset = 1 B \cap C$$

where

(0:5)
$$0 A := \bigcup_{a \in A} (\cdot, a], 1 B = \bigcup_{b \in B} [b, \cdot)$$

^{*} Supported by Republička zajednica za nauku SR Srbije, through Matematički institut-

and

$$(0:6) \qquad (\cdot, a] = \{x \cdot x \in O, x \leq a\}, [b, \cdot) := \{x \cdot x \in O, b \leq x\}.$$

Therefore we can formulate following.

0:7. Intercalation 01 (n) (or I(n)). For any 3-un (A, B, C) of subsets of (O, \leq) each of cardinality < n and such that

$$(0.8) \qquad (0 A \cup 1 B) \cap C = \emptyset$$

there exists a point p := p(A, B, C) of O such that

$$(0:9) A$$

- 1. Theorem. For any ordinal number α the conditions $C(\alpha)$, 01 (\aleph_{α}) are equivalent, i.e. an ordered set (O, \leqslant) satisfies $C(\alpha)$ if and only if (O, \leqslant) satisfies $I(\aleph_{\alpha})$.
- 1:1. Proof of \Rightarrow . Let $x_0:=(A,B,C)$ be any 3-un like in the wording of $01(\S_{\alpha})$; then $X:=A\cup B\cup C$ is an ordered subset of power $<\S_{\alpha}$ of (O,\leqslant) ; let us consider the set $X_0=X\cup \{x_0\}$; of course, $X_0\setminus X=\{x_0\}$; let \leqslant' be the order relation in X_0 obtained by extending (X,\leqslant) on setting $A<'x_0<'B, x_0\parallel_{<'}C$. As the set (O,\leqslant) has the property $C(\alpha)$ there is a point $p\in O$ such that the mapping s of X_0 satisfying $s\upharpoonright X=Id_X$ and $sx_0=p$ be a similarity between (X_0,\leqslant') and $(X\cup \{p\},\leqslant)$; this means exactly that p is a point in (O,\leqslant) requested by the condition $01(\S_{\alpha})$.
- 1:2. Proof of \Leftarrow . Let (O, \leqslant) be given and let X be any subset of cardinality $<\mathfrak{F}_{\alpha}$; let (X_0, \leqslant') be any axtension of (X, \leqslant) obtained by adjoining to X a single point $X_0 \notin X$. Consider:

$$A: = \{a : a \in X, a < x_0\}, B: = \{b : b \in X, x_0 < b\}, C: = X \setminus (A \cup B).$$

- The 3-un (A, B, C) of subsets of (O, \leqslant) satisfies the condition (0:3). As a matter of fact, $A < 'x_0 < 'B$ thus A < 'B and A < B (because $A \cup B \subset O$); further there is no point $c \in C$ such that $c \leqslant a$ for some $a \in A$ because, in opposite case, there would be a $c \leqslant 'x_0$ i.e. $c \in A$, A being a left segment of (X_0, \leqslant') ; but $c \in A$ does not hold because $C \subset X \setminus A$. Analogously one checks easily that $C \cap (B, \cdot) = \emptyset$. Thus (0:3), (0,8) hold; then according to $01 \ (\$_{\alpha})$ there is a point $p \in O$ such that $A and <math>p \parallel C$; then the mapping $s \upharpoonright X_0$ such that $s \upharpoonright X = Id_X$ and $sx_0 = p$ is a requested similarity between (X_0, \leqslant') and the subset $(X \cup \{p\}, \leqslant)$, s extending the identity mapping Id_X . This finishes the proof.
- 1:3. Remark. If one deals with lattices, then one could assume also that not only A < B but that also A, B be directed upwards and downwards respectively. Exactly so proceeded Negrepontis, S. Therefore the intercalation condition [I. Negrepontis, S. 1969] p. 517 in L. 1:6. (cf. also Comfort Negrepontis [1974] p. 124.) should be compared to the intercalation condition $C(\alpha)$ in D. Kurepa [1963] p. 21. We considered the condition still earlier; cf Math. Rev. 52 (1976) # 2888.
- 2. In connection with the above intercalation condition 01 (n) it is natural to consider also the following.

2:1. Intercalation condition 10 (n). Given an ordered set (O, \leq) and a cardinal number n. For any 3-un (A, B, C) of subsets of O, of cardinality < n each, and such that

$$A < B$$
, $(1 A \cup 0 B) \cap C = \emptyset$

there exists a point p = p(A, B, C) of O such that

$$A , $p \parallel C$.$$

- 2:2. One checks readily that the arguments of the section 1 hold on permuting the signs 0, 1. In particular, $C(\alpha)$ and $10(\aleph_{\alpha})$ are equivalent conditions. Therefore, because of 1 we have the following
- 2:3. Theorem. For any ordered set (O, \leq) and any ordinal number α the intercalation conditions $C(\alpha)$, 01 (\aleph_{α}) , 10 (\aleph_{α}) are pairwise equivalent.
- 3. On an intercalation $I_2(n)$. The above *n*-intercalation: $=I_1(n)$ was considered in connection with ramified sets (: = pseudotrees). For any $(0, \leq)$ we may examine the following intercalation:
- 3:1. $I_2(n)$. For any ordered set (O, \leq) and any 3-un (A, B, C) of subsets, of cardinality < n each, the conditions

$$A < B$$
, $A \cup B \parallel C$

imply the existence of a point $p \in O$ such that

$$A , $p \parallel C$.$$

In other words (cf. (0:3)) $I_2(n)$ is obtained from the condition $I_1(n)$ on requesting moreover that $A \parallel C$. Therefore we have the following

- 3:2. Lemma. If (O, \leq) satisfies the *n*-intercalation, the more (O, \leq) satisfies $I_2(n)$; in other words.
- (3:3) $I_1(n) \Rightarrow I_2(n)$ for any cardinal number n. On the other hand, one has the following
- (3:4) Lema. $01(n) \Rightarrow I_2(n)$.

Proof. At first,

$$(3:5) A \cup B \mid C \Rightarrow (0 A \cup 1 B) \cap C = \emptyset.$$

In opposite case, one of the sets $0 A \cap C$, $1 B \cap C$ would be $\neq \emptyset$; assume that the first case may occur, i.e. that some point c exists such that $c \in C$ $c \leq a$ for some $a \in A$; this would mean that |A| |C, contrarily to the assumption $(A \cup B) || C$. So (3:5) holds. Let us now assume that (O, \leq) satisfies I(n); to prove that (O, \leq) satisfies $I_2(n)$. As a matter of fact, let (A, B, C) be any 3-un of subsets of (O, \leq) of power < n each and such that A < B, $(A \cup B) || C$; then according to (3:5) the assumptions for application of $(O, C) \cap (O, C)$ such that $(O, C) \cap (O, C)$ such that $(O, C) \cap (O, C)$ as was requested in the conclusion of $(O, C) \cap (O, C)$.

3:6. Remark. If one applies $I_1(n)$ to the ordered set (O, \ge) one gets for (O, \le) the following.

Interclation $I^1(n)$. For any 3-un (A, B, C) of subsets of (O, \leq) of cardinality < n each, the conditions

$$A < B$$
, $A \parallel C$

imply the existence of a point $p \in O$ such that

$$A , $p \parallel C$.$$

3:7. In [Kurepa 1963] section 8 following question was raised: Exhibit an ordered set (O, \leq) having the $I(\alpha)$ —property but not having the $C(\alpha)$ —property. According to 2:3 such a set (O, \leq) would satisfy reither $01(\alpha)$ nor $10(\alpha)$.

BIBLIOGRAPHY

- [1] Comfort, W. W. Negrepontis, S. 1974 The theory of Ultrafilters. Springer Verlag- Grundlehren der math, Wiss., 211 (1974) X+482.
- [2] Dokas, Lambros [1963 a] Sur certains des ensembles ordonnés munis d'opérations: complétés de Dedekind et de Kurepa des ensembles partiellement ordonnés. C. R. Acad. Sci. 256 (Paris 1963), 2504—2506, M. R. 26 # 4941.
- [3] Kurepa, Đuro [1935] Ensembles ordonnés et ramifiés, Thèse. (Paris 1935) VI+140; Publ. Math. Univ. Belgrade 4 (Beograd 1935), 1—138.
- [4] Kurepa, Đuro [1963] On universal ramifeid sets. Glasnik Mat. fiz. astr. (2) 18 (Zagreb 1963) 17-26.
- [5] Mijajlović Žarko, [1979] Saturated Boolean algebras with ultrafilters, Publ. Math. 26 (40) (Beograd 1979),
- [6] Negrepontis, S. [1969] The Stone space of the saturated Boolean algebras. Trans. Amer. Math. Soc. 131 (1969), 515—527.
- [7] Dokas, Lambros [1973 b] Certains complété des ensembles ordonnés munis d'operateurs: complétés de Krasner. C. R. Ac.Sci. 256 (1963) 3937—3939; M. R. # 3947.
- [8] Dokas, L. Krasner M. [1976] Limite projective et inductive et certains complétés d'ensembles ordonnés. Mathematica Balkanica 6 (Beograd, 1976), 41—46.
- [9] Kurepa, Đuro: A classification of topological space. Z-number of spaces. Publ. Inst. Mathématique 25 (39), pp 79—89, Beograd (1979).

Erratum corrige

- p. 85 lines 12, 14, 15 write ind instead of dim
- [10] Kurepa, Đuro: On some hypotheses concerning trees. Publications Inst. Mathématique 21 (35) (1977), pp. 99-100.

Erratum corrige

p. 105 in 7:8 Proposition: write P_{15} instead of the second P_{15} .