A NOTE ON ULTRAPOWER CARDINALITY

Aleksandar Jovanović

(Communicated August 5, 1977)

Here we give some evaluations of ultrapower cardinality, obtained by generalising techniques developed in [1] and [2]. Filter regularity definition is from [2].

We say that a filter D is (α, β) -regular if D contains a family E such that

$$|E|=\beta$$
 and

$$X \subset E \& |X| \geqslant \alpha \rightarrow \bigcap X = \emptyset.$$

Ultrafilters D and E are equally regular if for all α and β D is (α, β) -regular iff E is (α, β) -regular.

In the following text we assume that D is an uniform ultrafilter over an arbitrary cardinal γ .

Proposition. If D is (α, β) regular and ν , k are cardinals such that

$$\alpha \leqslant \nu \leqslant \beta \quad \alpha \leqslant k \leqslant \beta \quad and$$

$$k \stackrel{\nu}{\smile} = k, \qquad then$$

$$\left| \prod_{D} k \right| \geqslant 2^{\beta} \quad and$$

$$\left| \prod_{D} k \right|^{\nu} = \left| \prod_{D} k \right|.$$

Corollary.

3. If
$$(cf\gamma)^{cf\gamma} = cf\gamma$$
 then $\left| \prod_{D} cf\gamma \right|^{cf\gamma} = \left| \prod_{D} cf\gamma \right|$.

4. If
$$\gamma$$
 is strongly inaccessible or $(\gamma = \lambda^+ \text{ and } 2^{\lambda} = \lambda^+)$ then $\left| \prod_{i=1}^{n} \gamma_i \right| = 2^{\gamma_i}$.

Proof.

I. By assumption, k = k, what implies that $\left| \prod_{D} k \right| = \left| \prod_{D} k \right|$ and $v \le k$. Since D is (α, β) -regular and $v \in [\alpha, \beta]$, D is (v, β) -regular too. Let $E \subset D$ be such that

a)
$$|E| = \beta$$

b) if
$$X \subset E$$
 and $|X| \geqslant \nu$ then $\bigcap X = \emptyset$.

Let E be well ordered by \leq . For all $i \in \bigcup E \in D$ we define:

$$X(i) = \{e \in E: i \in e\}$$
 and

seq (i) to be the sequence of $e \in X(i)$ ordered by \leq . Given any $g \in {}^{E_{\nu}}$, we define g'

if
$$seq(i) = \langle e_{\varepsilon} | \xi \langle v_i \langle v \rangle$$
 then

$$g'(i) = \langle g(e_{\xi}) | \xi < v_i < v \rangle.$$

 $X(i) \subset E$ and $i \in \cap X(i)$, hence by b), $|X(i)| < \nu$ and thus $g'(i) \in k^{\vee}$. Define $\pi: E_{V \to D} \prod k^{\vee}$ with $\pi g = g'_{D}$. We prove that π is 1-1. Let $g, h \in E_{V}$ and $g \neq h$.

That means that for some $e \in E$ $g(e) \neq h(e)$. Let e be e_{λ} in seq(i). Hence, for all $i \in e$

$$g'(i) = \langle g(e_i) \cdots g(e_{\lambda}) \cdots g(e_{\xi}) \cdots | \xi < v_i < v \rangle \neq \langle h(e_i) \cdots h(e_{\lambda}) \cdots h(e_{\xi}) \cdots | \xi < v_i < v \rangle = h'(i).$$

Since $e \in D$, we have that $g'_D \neq h'_D$. Hence

$$\big|\prod_{n} k\big| \geqslant \big|^{E_{\mathsf{V}}}\big| = 2^{\mathfrak{g}}.$$

- 2. $k^{\nu} = k$ is assumed. So, $\left| \prod_{D} k \right| = \left| \prod_{D} k^{\nu} \right|$. We shall prove that $\left| \prod_{D} k \right|^{\nu} \le \left| \prod_{D} k^{\nu} \right|$. To do that it is sufficient to find τ , which maps a subset of $\prod_{D} k^{\nu}$ onto $\binom{\tau}{D} k$. For this, it is sufficient to find a σ : $\binom{\tau}{V} \to \binom{V}{V}$ such that
- (+) if $g, h \in {}^{v}({}^{\gamma}k)$ and $\sigma g = {}_{D}\sigma h$, then for all $\xi < v$, $g(\xi) = {}_{D}h(\xi)$. Since then τ can be defined by:

if
$$\sigma g = f$$
 then $\tau (f_D) = \langle g(\xi) | \xi < v \rangle$.

D is (α, β) -regular and hence (α, ν) -regular, so there is an $E \subset D$ such that: $|E| = \nu$, and for all $X \subset E$, $|X| \geqslant \alpha$ implies that $\cap X = \varnothing$. Let E be well ordered with \leqslant . From here $E = \{e_{\xi} \mid \xi < \nu\}$. By choice of E, for any $i \in \bigcup E$ there is $\nu_i < \nu$ such that $i \in e_{\nu_i}$ but for all $\xi > \nu_i$, $i \notin e_{\xi}$. Now we define σ :

if
$$g \in {}^{\vee}({}^{\gamma}k)$$
 then $(\sigma g)(i) = \langle g(\varnothing)(i) \cdots g(\xi)(i) \cdots | \xi \leqslant v_i \rangle$.
 $\sigma g \in {}^{\gamma}(k, \underline{v})$. We prove $(+)$. Let $\sigma g = {}_{D}\sigma h$ and let $X = \{i \in \gamma: (\sigma g)(i) = (\sigma h)(i)\}$.
 $X \in D$. For all $\xi < v$ we define $d_{\xi} = \{i \in \gamma: v_i > \xi\}$. Since $\{i \in \gamma: v_i > \xi\} = \bigcup_{\lambda > 2} e_{\lambda}$, we

see that for any $\xi < v$, $d_{\xi} \in D$, and $\gamma \setminus d_{\xi} \in D$. Hence, for all $\xi < v$, $d_{\xi} \cap X \in D$. However, for all $i \in d_{\xi} \cap X$ we have that $v_i > \xi$ and $(\sigma g)(i) = (\sigma h)(i)$. Thus,

$$\{i \in \gamma: g(\xi)(i) = h(\xi)(i)\} \supset d_{\xi} \cap X \in D,$$

which implies that $g(\xi) = ph(\xi)$.

3. D is a uniform ultrafilter over γ therefore it is $(cf(\gamma), cf(\gamma))$ -regular. $cf(\gamma)^{cf(\gamma)} = cf(\gamma)$ is assumed, thus we can apply 2. to obtain

$$\Big| \prod_{D} cf(\gamma) \Big|^{cf(\gamma)} = \Big| \prod_{D} cf(\gamma) \Big|.$$

4. a) if γ is strongly inaccessible then $cf \gamma = \gamma$ and $\gamma \mathcal{I} = \gamma$. Thus, we have

$$\left| \prod_{p} \gamma \right| = \left| \prod_{p} \gamma \right|^{\gamma} = 2^{\gamma}.$$

b) if γ is a successor cardinal, say $\gamma = \lambda^+$, then $cf \gamma = \gamma$. Suppose that continuum hypothesis is true on λ i.e. $2^{\lambda} = \lambda^+ = \gamma$. Then we have $\gamma^{[M]} = \gamma^{\lambda} = 2^{\lambda} = \gamma$, and, by 3.

$$\Big|\prod_{D} \gamma\Big| = \Big|\prod_{D} \gamma\Big|^{\gamma} = 2^{\gamma}.$$

From Frayne, Morell and Scott Theorem we know that $\left|\prod_{D}\gamma\right| > \gamma$. Now we see that in the cases a) and b) we have $\left|\prod_{D}\gamma\right| = 2^{\gamma}$ or, equally $\left|\prod_{D}\gamma\right|$ does not depend on the continuum hypothesis at γ .

We could not answer the following question.

Is it possible that for some cardinal k and some equally regular ultrafilters D and E

$$\left|\prod_{D} k\right| \neq \left|\prod_{E} k\right|$$
 ?

REFERENCES

- [1] Chang, Keisler, Model theory, North Holland, 1973.
- [2] Comfort, Negrepontis, The theory of ultrafilters, Springer Verlag 1974.