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Summary. The most important problem in the time spectral analysis of
a second ordered stochastic process is the problem of determining of the
spectral type of a process. In this note we shall give the solution of one
part of that problem; more precisely, we shall determine the maximal spectral
type of a process. We shall see that, in some special cases, from our result
we will obtain the maximal spectral type in terms of correlation function
of the process.

1. Let X ={X (f), 0<¢< 1} be a purely nondeterministic stochastic process
of the second order, continuous to the left in quadratic mean [2]: without
loss of generality we shall assume that EX(f)=0 for any f. The smallest
Hilbert space spanned by the random variables X (s), 0<s<?, denote by
H(X; f); put H(X)=H(X; 1). It is known that the space H (X) is separable
[1]. The projection operator from H (X) onto H(X; f) denote by Ex(¢); it is
easy to see that the family Exy={Ex(r), 0<{t<{1} represents the resolution
of the identity of the space H(X), [2]. Each random variable z& H (X) defines
the function

F,()=|Ex(Oz|P=E|Ex(®)z]% =~ 0<i<],

which determines the measure

w (= [dF.(), AEB.

where 3 is the Borel o-field over [0; 1]; the set of all measures, determined
in such a way, denote by M. We say that the measure (., is smaller that the
measure g, (4,, @, EM), and write p,<y,, if w, is absolutely continuous
with respect to u,. We say that the measures p, and y, are equivalent, and
write g,~,, if p,<p, and p,<w,. The set of all pEM equivalent to a
given p, forms the equivalence class of y,; the elements of the set M/. of



26 , Jelena Bulatovié

all equivalence classes we call the spectral types. The spectral type deter-
mined by u, we shall denote by p,, and say, also, that p, is' determined
by z. In the set M/. a partial ordering is introduced in the obvious way by
saying that p, is smaller than p,, and writing p,<<p,, when the corresponding

relation holds for any pCp, and any wCp,; we say that the spectral types p,
and p, are equal, and write p,=p,, if p,<<p, and p,<p,. It is easy to see
that.the set M/. has the smallest (it is the spectral type identically equal to
zero), and (by reason of the separability of H(X)) the greatest element [4];
the greatest element of M/. denote by py. If p is arbitrary spectral type
smaller than py, then there is at least one element x& H (X), such that o, =p, [4].

Let p, and p, be arbitrary elements from M/.; the greatest spectral type
which is smaller than both o, and p, (the smallest spectral type which is greater
than both p, and p,) denote by inf{p,, p,;} (sup{p,,e.;}); inf{p,, p,} and
sup {p,, p,; exist for all spectral types ¢, and p, from M/... Also, for arbitrary o,
from M/, there is p,, such that inf {p,, p,} =0 and sup {p,, p,} =px, [4]. Since
the operations inf and sup are mutually distributive [4], it follows that M/.
is the Boolean algebra. It can be shown that this Boolean algebra is complete,
i.e., that infimum and supremum exist for any set of spectral types (of arbit-
rary cardinal number), [4].

We say that spectral types p, and p, are mutually orthogonal if
inf {p,, p,}=0. Since the set M/. is bounded, it contains at most countably
many mutually orthogonal and different from zero spectral types [4]. There is
a set {p;, p,» ...} of mutually orthogonal spectral types from M/., such that
any element p<M/.. can be represented in the form p =sup {s,, o,, ...}, where
c;<<p; for each i. We say that {g,, p,, ...} is one basis of M/.; the equality
ox=sup{p, p,, ...} is satisfied. It is clear that any basis of M/. has at most
countably many elements.

Let z be an arbitrary element from H(X); the subspace H(Z) of H(X),
defined by '

H(Z)=F{Z(t)=Ex()2z, 0<t<1}

(where _#{-} denotes the smallest Hilbert space spanned by the elements in
the parantheses), we shall call the cyclic space generated by z. We say that p,
represents the spectral type of H(Z); the spectral type of a cyclic space is
uniquely determined. The multiplicity m, of p, is equal to the cardinal number
of the set of ail mutually orthogonal cyclic spaces of H(X) of the spectral
type p,; we write m,=mult p,. The multiplicity of any spectral type is uniquely
determined, and, by reason of the separability of H (X), it cannot be  greater
than §,, [4]. It is clear that from the orthogonality of the spectral types p,
and p, it follows the orthogonality of the cyclic spaces H(Y) and H(Z), [4]

2. One of the most important problem of the spectral theory of stochastic
processes is the problem of determining of the maximal spectral type of arbitrary
process X. Theoretically, the maximal spectral type can be determined as in
Part 1. Practically, it is desirable to be able to determine p, when we know
only the random variables X (#), 0<{t<<1 (i.e. without the knowledge of the
subspaces H (X t), 0<{t<{1), or, much better, when we know only the corre-
lation function of X. The next theorem gives, in some special cases, just such
a possibility. ' ' ' o
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Theorem. The maximal spectral type py of the stochastic process X
satisfies the equality

ey ‘px= sup l{pt},

where o, is the spectral type generated by X (t).

Proof. Since py is the maximal spectral type of X, it must be

sup {p:}<ex-

0<<r<Cl

Suppose that the spectral types from this relationship are not equal, i.e., that
there is a spectral type g, such that

@ sup {pi}=py<Px-

01
Let {p,, p;» ---} be one basis of M/.; p, can be represented in the form
o =Sup {cy, 05, . .}, 0;<p; i=1,2,... . Let us put m,=mults,, i=1,2,...,
and let Hy;, j=1,..., my;, be mutually orthogonal cyclic subspaces of H(X),

whose spectral types are equal to o;; put Hy= > Zl @ H;;. From the construc-
' i j=1

tion of H, it follows that the maximal spectral type, generated by the elements
from H, (in respect to Ey), is equal to p,. Since (by reason of (2)) p:<p,»
the random variable X () must belong to H, for any ¢, i.e., it must be
H(X)CH,. However, from (2) it follows that there exists p&M/~, such that
inf {p, p,} =0 and sup{p, po}=px- There is an element z7#0, z&H(X), such
that p,—p. From inf {p,, p,} =0 it follows inf {p,, o;}=0 for all , which means
that, in H(X), there is a cyclic subspace H(Z) of spectral type p,, and that
H(Z) is orthogonal to H,, which contradicts the previous conclusion. We
proved that (1) holds. QED

Remark. If instead of the condition of the left continuity of X, we
assume that H(X; t—0)=H(X; t) for each ¢ (where H(X;t—0) = FP{X(s),
0<s<}), then the space H(X) is, in general, non-separable, i.e., dim H (X) =¥,
" (if we accept the continuum hypothesis). In this case the set M /~ has not the
maximal element — it contains continuously many mutually orthogonal spectral
types. Because of that the generalized spectral types (instead of ordinary)
must be considered [4]. But, in terms of these spectral types, the same result
is valid.

Example 1. Let:Z = {Z (t), 0<t<1} be a stochastic process with ortho-
gonal increments, - such that Z(0)=0 and |[|Z(#)|? =E|Z(t)|?=F @) <,
0<¢< 1. Then, for arbitrary but fixed 7, we have

{F (s), s<t,

F ) =||Ez(9Z ()| = F(1), s>t;
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hence p,(4) = f dF,(s), A€ 3. It is easy to see that the maximal spectral

type pz of Z is determined by the measure p,:

b ()= [dF(s),  AEB
A
Example 2. Let X be a wide sense Markov process, i.e., the process
for which X ()0, || X () ||< «, 0<r<1, and
Ex(s)X(#)=a(t, s) X (s), S< L.

Suppose that a(z, s)70 for all ¢ and s. First of all prove that the following
proposition is valid:

If||a(ty, ) X (s) || = C(t,) for some fixed t, and any s, 5, <s<s,<t,, then
la(t, )X (s)||=C () for all t and all s, 5,<5<s,.

Proof. We have
3) e, HX @Y =lla@,, )X ()| for 5, <8, 57<s,;
put s'<<s”. Let us show that the equality
C)) a(ty, SYX($)=a(,, s") X ("), 5, <8 <5<,
holds. From H (X; s')C H (X; s'") it follows
) a(ty, 5 X (5") = (ty, ) X (') + Py 0 sy X (1)

i.e.
lat, sYX (") |=llat, SN XE) |+ Pagesnona» X 1) .

The last term on the right side is, by reason of (3), equal to zero; hence
Prx;smenx sy X () =0,

which, together with (5), gives (4). From (4) we -obtain

X =20 ey, s<s<si<s,
a(ty, s')
or
© x@=2M Dy, <<,

a(t,,s)

From this equality it follows that X does not have orthogonal innovations
during the interval [s;; s,]; hence

N H(X; 5,)=H(X; s), 5, <SS,
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For arbitrary ¢, t>s,, 15t,, we have
PH(X;s)X(t)=a(t’ S)X(S)’ '3'1<S<S23

PH(X; 51) X(t) =da (t: Sl) X(Sl)’
which, by reason of (7), means that
a(t, s X(s)=a(t, s) X (s), 5SSy,

and also

i.e.

® X(s)= all ) X (s1), 5SS,
a(t, s)

From (6) and (8) we obtain
alty, s) _a(t,s) ’
a(ty,,s)y af(ts)
That means that in the interval [s;; s,] the function a (¢, s) has the form
a(t, )=f(t)-g()
f(®)#0, g(®#0

S LSS, 5, s,

} 8IS, <L
Thus, we have
X(s)=‘gLS1)X(sl) for 5, <s<s,,
4G :

which proves our proposition for t>s2 It is easy to see that the proposition
is also valid in the cases t<<s; and 5, <1<5s,. - QED

From this proposition it follows: If, for some to, the norm || a(z,, ) X (s) ||
is constant for any s, s <(s<(s,, then, in the interval [s;;s,], the norm
lla(, s) X (¢)| is constant for each t.

Now, we can determine the maximal spectral type of X. The measure y,
is determined by the function

Fr(s):HEXu)X(t)sz{aZ(ns)llX(s)uz s<t,

| X(@)|? s>t
It is easy to see that the measure wy, which determines py, is defined by

the function
F()=a*(1, )| X () |]% 0<s<l.

Really, if the function F(s) is equal to the constant on some interval [s;; s,],
then, for each ¢, the function F,(s) is also equal to the constant on the same
interval [s;; s,], which implies w,<py
It is easy to see that

I, s)
r(s, s)
where r (¢, 5) is the correlation function of X: r(z, $)=(X (t), X (5)), 0<s, £<1.
That is why the function F(s) can be written in the form

r*(1,s)
r (s, 5) ’

a(t, s)=——-—

st

F(s)= 0<s<l.
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Example 3. Let Y={Y(¢), 0<<r<1} be a martingal, defined on the
probability space (R, .7 , P); define the process X by

X(@0) =[O 0)dr(s), O0<t<l,
0

where the function @ (¢, ») is measurable with respect to dtdP, and, for each
fixed 5, @ (s, w) is measurable with respect to the o-field F 4, Which is gene-
rated by random variables Y (u), u<s. Let

1
(1@, o) |2dF, ()<,
0

where F, (t)=|| Y (#)|]% 0<¢<1. Then X is martingal [3] and its maximal
spectral type is determined by the function

F(t)=[]®(s o) |2dF,(s)y  0<i<l.
0

We obtain the same result if we put, in Example 2, a (¢, s) =1 for all # and all s.
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