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Abstract. After a survey of the generalized Hamilton’s equations with the
derivatives of higher order, the corresponding theory of canonical transfor-
mations is given in the most general case, including also the results of eailier
authors: the relations with the generating function, infinitesimal transformations,
the Hamilton-Jacobi method, Lagrange and Poisson brackets, as well as integral
invariants of the first and higher order and the corresponding Liouville’s
theorem.

1. Introduction

Some thirty years ago, F. Bopp and B. Podolski attempted a
generalization of electrodynamics, based on the Lagrangian with the derivatives
of the second order. Then the interest has been raised for the generalization
of the common Hamiltonian canonical formalism to the case when the deri-
vatives of arbitrary order appear in the Lagrangian. Several research phases
and groups of scientific papers dealing with the above problem are to be
distinguished:

a) The papers based on the calculus of variations (M. Ostrogradski
1850, Th. de Donder 1929)

b) The attempts to generalize the electrodynamics (F. Bopp 1940, B.
Podolski, C. Kikuchi and P. Schwed 1942—1943).

¢) The generalization of the Hamiltonian formalism (T. Chang 1946,
J. de Wet 1948, M. Borneas 1959, J. Koestler and J. Smith 1965, K. Thiel-
heim 1967, L. Coelho de Souza, L. and P. Rodrigues 1969).

d) The quantization on the basis of this formalism (D. Montgomery
1946, J. de Wet 1948, A. Pays and G. Uhlenbeck 1950, G. Hayes 1968,
M. Borneas 1972).
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Let us consider here only those papers which pertain to the mechanics
of particles. M. Ostrogradski [I] has shown that the Euler-Lagrange
equations of the calculus of variations can always be substituted by the equi-
valent differential equations of the first order. Starting from his own invariant
theory of the calculus of variations, Th. de Donder [2] obtained the equ-
ations of the extremals in the Hamiltonian form as well as the corresponding
Hamilton-Jacobi equation.

T. Chang [3] found indirectly the Hamilton’s equations for this case,
but without explicit definitions of the canonical variables, which must satisfy
a system of differential equations. M. Borneas [4] was the first to formu-
late explicitly the corresponding Hamiltonian and the generalized momenta,
transforming the Lagrange’s equations into such a chape from which the law
of energy conservation follows.

The corresponding generalized Hamilton’s equations were also obtained
by J. Koestler and J. Smith [5], independently of Ostrogradski and de
Donder. They obtained it in a manner similar to that used in the analytical
mechanics and formulated the corresponding Poisson and Lagrange brackets.
After accepting certain remarks of the two authors [6], Ligia and P. Rodri-
gues [7] have formulated also the corresponding canonical transformations.
They corrected the definition of the Poisson bracket given by the mentioned
authors so that this is always invariant, and obtained the corresponding
Hamilton-Jacobi equation on the basis of the canonical transformations.

2. Several formulae from the calculus of functionals

Two basic operations may be introduced for the functionals, which will
be used further in this paper, and for which the corresponding calculus of
functionals was worked out by V. Volterra [8]. The derivative of the
functional F=F[q; (x4, ©)] with respect to ¢;(x) in the print M is defined as

3F lim Flo..,0+Aq;,...]=F[...,9,...]

8¢ (x) A0 Ao

¢y
Ao=[Ag;(x)dV,

where Ag; is the variation of the function ¢;(x,, 7) in the vicinity AV of the
point M, and that represents the generalization of the notion of the partial
derivative. The differential of this functional is then defined by the formula

3 F
2 = — do,
(2) dF f 21 5o 09 do,(x)dV,

where d¢; (x) are the increments of the functions o, (x,, ) in the point M,
and this represent the generalization of the notion of total differential.

Consider the functionals in the form of an integral

Fe[ T @ @ha Phayos -3 Xa)dV,
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where ¢; , =0¢;/0x, and so on. With the above definition, the development of
the integrand into Taylor’s series and the transformation of the obtained
integrals using the integration by parts, yield

SF _0F o d 0F IS — 0.5
(3) 8‘?1 (X) 0@1 oy dxoﬁ 0CP, o o X2 d’(al dxaz 0<Pl oty l
ds 0.F
— s - e .
) Z %d cdXy 0Piy. .y |

where s is the order of the highest derivative, and this for the case g;=y{™ (x)
is reduced to

3F o7 d 3.5

(m) i (m+1)+ . _}.(_ l)s—m ds- aj-
dy; 0y, dx 0y;

4)
( dxs=m 9 y(s)

For the functionals in the form of a function

F=f(x)=[ K(x, x) o (x)dV,

the general definition of the functional derivative gives

3/ (x)

5
) 3¢ (x)

= K(x, xl)’

and in the special case when f(x)=¢(x), on the basis of the definition of
Dirac’s function

Sf(x)

6
© 3£ (x)

8 (x —x").

3. Generalized Hamilton’s equations

Let us consider now a system of particles with r degrees of freedom,
and assume the possibility of describing it by certain Lagrangian of the form

(7) L=L (qk’ qka ék’ s qgcs)t)'

The corresponding Lagrange’s equations, which are equivalent to the Hamilton’s
principle, have in this case the following from

oL d oL d? oL ds oL

Rt (__ )-‘

0gp dt dg, di® 0q, ar 0gP

b



144 Porde Musicki

or more concisely
£

®) 3 o, Ihszw.
LT

o

For such systems J. Koestler and J. Smith [5] obtained the corresponding
canonical equations introducing the generalized momenta

SW & oL
(9) pk/m =3 (m) Z ( dt] aq('H-m)

In this way they substituted the Lagrange’s equations by the equivalent system
of equations

s OH ey OH
(10) kim aq}(m-—l) ’ k ODiim »
k=1,2, ..., m=1,2,...,5)

where the Hamiltonian is

11 H (g™ S S L
1D Gk, Prim> 1) 2: > Pumqk —L.
=1 m=1

These are the generalized Hamilton’s equations for this case, and they
represent a system of 2rs differential equations of the first order with unknown
functions

. (s—1),
D> Qs -+ 5 9k H pk/p Drjas ++« s Prfss
which here take the role of the canonical variables. This Hamil onian could be
formed by eliminating only the derivatives of the highest oider, i. e. by solving the
last equations (9) for m=s with respect to the derivatives of the highest order
g Inserting these functions into the expression (11), one effectuates the
transition from Lagrange’s to Hamilton’s formalism.

In certain cases these systems can be ‘reduced to the standard systems,

namely when :

. 5 , d . s
(12) L(qk9 D>+« - » qfc) t)=L0 (qk’ qka t)'*‘Ef(qk’ /T qgc, K t)'

Then it will be
oL 0
aq(s) aq(s)[z Z () (m—l)

w@} of

og8™"’
from which it follows

(13) EE‘ o’ L

2g ogf

Consequently, these exceptional systems are degenerated in the sense of
Dirac [9, 10].
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4. Formulation of the canonical transformations

As usually, the canonical transformations are defined [7] as such trans-
formations of canonical variables

(14) "™ =Fin @™, Pim s Patm=Gim @™, Dt 1),

which maintain the shape of the generalized Hamilton’s equations invariant
and which may be solved with respect to the old canonical variables. The
Hamilton’s equations being equivalent to the Hamilton’s principle in the form

151
5[ (g > Pum " — Hydt =0,
f m

the necessary and sufficient condition for the transformation (14) to be
canonical is

(15) 2 2 Pumdqi " —Hdt=c (3. 3 Py dQ™ " —Kdt)+dG,
k m k m

where K is the new Hamiltonian, and G is the corresponding generating func-
tion. Due to the factor ¢, a wider class of canonical transformations is
included than usually.

For the generating function of the type G, (¢ ", Q"~", ¢) if itis expli-
citly written and the corresponding coefficients compared, one obtains

0G 0G
Prim= (m..l.l) > cPpjm= ~ (ml_l) l
04k 0 Qk
(16) 56
¢cK=H+—1 l
ot

If the condition (15) is transformed so that the independent variables are

g, Py, and ¢, and the generating function

(m—1)
s

-1
Gz(ql(cm )9 Pk/mst)ZGl+ckzsz/m k
m
is introduced, using a similar procedure it is found that

oG m— oG
Diim = (mil) ’ ch(c b_ 2 l
oqx 0Py,
an
cK=H+@ ]
ot

Solving the first system of equations with respect to Q" " and P, respec-
tively, and introducing them into the second system, the new canonical vari-
ables will be obtained as the functions of the old ones.
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5. Infinitesimal canonical transformations
Let us define these transformations by the relations
(18) 0 =q" P +3¢0"",  Piym=Pim+3Piim-
Since the generating function

G (q(m—l) Pk/m)zzk: Z ql(cm_l) -Pklm;
m

gives an identical transformation, for the generating function of the considered
canonical transformation we may take

(19) G, @™, Pum> 1)= Z Zq‘"' D Pem+eG (@0, Pijms D

where ¢ is a small parameter. According to (17) one then obtains

e 0G’ oG’
(20) SQI(c Doe = > BPk/m= —€ -
O Piim oqi" "

In the special case G'=H, e=dt these relations, with the aid of the genera-
lized Hamilton’s equations, give

(1) 3¢5 —dgl"™",  SPiim=dDim>

i.e., even-in this case the evolution of the state of the system in the course
of time may be considered as a sequence of successive infinitesimal canonical
transformations.

For the variation of any function of canonical variables in the sense

SF=F Q™. Pm D—F (@, Pryms 1)

developing the first term into Taylor’s series and substituting Sq("’ D and

3 pi/m according to (20), we find
(22) SF=c¢[F, G'],

where the symbol [ ] represents the generalized Poisson bracket

0o ou ov
23 u, v .
(23) [0, 0= 3 2 (()q(m 5 onen omon aq(km_l))

Using this notion, one can formulate also the condition for certain quantity
to be a constant of motion, as it is in the common case

9F_ ik 2o
ot
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6. Hamilton-Jacobi method

Taking such a canonical transformation for which the new Hamiltonian
is identically zero, the generalized Hamilton’s equations in the new variables give

(24) P = %, = cOnSt, Qm=H =B, = const.

If the generating function of the second type is taken, and all the generalized
momenta py, in the Hamiltonian H (¢{"-Y, p.,,, ), according to the first

relation (17), are substituted by 0S5/0g—D, the last relation yields

oS oS
— 4+ H|gm-» 7 _ =
(25) Y + (qk s 2giD’ t) 0.

This is the corresponding Hamilton-Jacobi equation [7]. If, by using a
similar procedure as that in the analytical mechanics, we find one its complete
integral

S=8 (ql({m‘l)s X fem> t)’

the solutions of the generalized Hamilton’s equations may be obtained with
the aid of the system of corresponding equations (17)

()S(ql(cm_l)a L > Z) ()S(ql(cm—l), ke > t)
26 = Dpim s =cPBn,-
( ) ()q,((m_l) Dri aakm Bk

By a]gebraic‘ solution of these equations with respect to gm=b and p,, one

can evaluate all canonical variables as the functions of time and integration
constants.

7. Necessary and sufficient condition in the form of brackets

The condition (15) for the canonical transformation may be expressed

also by primary variables only, substituting d Q" ™" according to (14) by a
corresponding total differential. Hence, one obtains

200Dy
> z(pk,m—cg S P ,bq(Lm_l)_)dq,‘c 433 (—c S5 Pem x
m m k m L2
0Q-1 / 90 =1
x ok —)a’pk/m—l—ch—H—c >3 Piw &‘—) dt=dG.
()pk/m k' m

Using the conditions for which the expression on the left side is a total
differential, one can write them in a more concise form by introducing the
generalized Lagrange bracket

aq(mfl) d aq(m—l) E)
(27) _ ( k 9 Pim k Pk/m) ,
{u, =} g 2 ou ov 09 ou

m

10*
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so that these conditions are reduced to

(40, 41Yar=0 b Pinl.r=0,

28 1
@8) {40, Pumto.r=—; dudm

Let us mention that this bracket represents a modification of the definition
given by earlier authors [5], by analogy with the Poisson bracket.

These Lagrange and Poisson brackets are related by
2rs
Z {uy, w;}lu, uj]=3ij,
=1

where u, are the arbitrary functions of the canonical variables. On the basis
of this relation and the conditions (28) may be obtained the equivalent condi-
tions in the form of the generalized Poisson brackets also

29) [q¢"Y, ¢ V], p=0, [Pem> Pimlo.r= 0,
[Q§Cm_1)9 pl/n]Q,P = cskl 8mn

8. Invariance of the Lagrange and Poisson brackets

If we form the generalized Lagrange bracket (27) in the new canonical
variables and if we transform all partial de ivatives to the old variables, we
will find

ogr=h ogr D

— s (n—1) ()]
olar-3 333 (" e (a7 A o+

I n

0q7"™ dpyjw op;, 9970

ou 0v {470 Priw}op+ ou  0v {Pun> 97 VYo, pt

+ apl/n ap"/"'

ou  ov {Pum Pl’ln’}Q,P> .

In this way this Lagrange bracket is reduced to the fundamental one and
with the aid of (28) one obtains

(30) {w ohor == {1 v}

In the same manner, transforming the generalized Poisson bracket one finds

@a31) [u, v]lo,p=c[u, 2]4,p-

Therefore, the generalized Lagrange and Poisson brackets remain invariant in
the canonical transformations up to the multiplier 1/c i.e. c.
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9, Generalized de Donder’s relation

In order to represent geometrically the states of the system in this case,
let us introduce the generalized phase space as the Euclidean space with 2rs
dimensions, the points of which are the sets

{9 @5 4875 Pus Przs - 5 Pris)
In thus defined space one can introduce the corresponding integral invariants
by generalizing one of de Donder’s relations in the following manner.

Let us consider the case when the canonical variables are dependent not
only on time, but on some parameter o also

(32) qfc'”_l)=‘1§c'”‘l) (t, o), Dijm=DPijm (ts )
If we denote by & the variation which comes from the change of this para-

meter, and if we put g, +1=t Pri1= —H, we can introduce the quantity
r+1 s

(33) =2 2 gq(m) S~ ‘)—Z 2. gq(m) Sqg—h—H3t.

k=1 m=1 k=1 m=1
Starting from the identity, which results from the definition of the functional
derivative
SW oL d 3W
Sqim—l)_aqim—l) _E gqgn) 4

and generalizing the relation between the variation of a derivative and the
derivative of the variation correspondent to the derivatives of arbitrary order

d d
Sql(cm)z—;; 8q§cm_l)—ql(€m) ;t- 8[,

after multiplying this identity by 3¢~ and summation with respect to indices,

one obtains
dj 3W SW d
34 = =3L-S5 — 8qp + —_gm — §¢,
( ) dt %: qu’ Gk kzg ng,") qk dt
This relation represents the generalization of the central Lagrange’s equ-
ation in common analytical mechanics, and in the special case when 3¢=0 is
reduced to the de Donder’s relation (Ref. 2, p. 98).

10. Lagrange’s equations and integral invariants of the first order

If the Lagrange’s equations (2) are satisfied, the second term on the
right side of (34) vanishes. By integrating the above relation along the curve
(32), i.e. with respect to the parameter «, not varying the time within the
limits but only the limits #, («) and ¢, (x), one obtains

2 2

- g4 | SL.
dtfj dtfzzsq"”’ f

1
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If this curve is closed, the last integral at the right side is zero, and hence
the quantity

9 7933

taken along any curve in our space remains costant during the time.

This integral represents the generalization of the Poincaré-Cartan integral
invariant to our case, its geometiical sense being as follows. If in the enlarged
phase space (Fig. 1) we imagine any closed curve L, and through each point

SW o o -
Sq *I¥ l)zﬂg(kz%p"’”‘sq(k V- Ho1),

[Py}

{qk(m«l)}

Fig. 1

of this curve the corresponding trajectory of state is drawn, then the integral
(35) has the same value along all curves Ly, L,, L,.... which lie on the
surface formed by these trajectories. It should be mentioned that the same
results can be obtained starting from the corresponding general variation
of action

BW=| (S 3 pumdafr D= HO1) 1.
k m

In order to investigate the behavior of this integral in the canonical trans-
formations, we shall integrate the necessary and sufficient condition (15), where
d is substituted by 3, along any closed curve

95 (3 3 Pumdq" P —H3t)=c ? (5SS PumdQMH—K8t)+ 5686,
k m % m
L T i

where L represents the corresponding curve in the phase space of new canonical
variables. Since 9§SG =0, one obtains

(36) g_L T
c

i.e. the generalized Poincaré-Cartan integral is invariant with respect to the
canonical transformations up to the multiplier 1/c.
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In the special case 8t—0, when the time does not vary, the integral
(35) is reduced to

37 7, 99 S'S Puim 300,
k m

and that is the generalization of the Poincaré’s integral invariant.

11. Absolute integral invariants of higher order

The last integral may be transformed into a surface integral by using
Stokes® theorem

(38) 7, = SB S Pum 340 = f S S 8q% 3pym.
k m kK m
L S

In analogy with Poincaré’s integral invariants of higher order in the analytical
mechanics [11], let us form the following set of integrals, where the sum in
the integrand is to be taken only over the different indices

Ji= f% > 3¢V 3pkims
S

7, - f f S5 ST 80D 8¢ Spum Spem

(39) s S l

grs= ffqulb‘qlng:_l) Sq,SQ,.,.gqis_l)x

X 3pi 8P yjz- - OPyyse - - - 3Py, 8Drps - - - ODyys.

The last of these integrals may be interpreted as a volume in our phase space.

Introducing the Gauss’ parameters as the integration variables, the element
of each of these integrals may be written as

d(gim—1, . ., g"r-D, ..., Pk
@@ a0 Prams - PR gy .
O(uy, Uy, oo o5 Uyy)

Let us develop the Jacobian of this transformation with respect to the minors
of the second order, generalizing the corresponding relation from the analytical
mechanics [12],

k1 kf my Mf 0(”1, u2, “ e uzf)

X{u3, u4}' ' '{uvzf_p u\‘2f}'

dgf—_—

(™=, ..., g5, Piyimys - -+ » Phgmp) _ 1
b4 kf 1/my ff=§Zi{u1, U, } X
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Here the summation is extended over all the permutatious {v;, v,,...,v,s}
denoted by + or — depending on whether the corresponding permutation is
odd or even. In this way, on the basis of (30) one obtains

(40) Tp= if I, A<Lf<rs)
C

Therefore, all generalized Poincaré’s integrals of higher order remain
invariant under canonical transformations up to the multiplier 1/c”.

12. Generalized Liouville’s theorem

As a consequence of the invariance of the last integral (39) even in this
case follows the corresponding Liouville’s theorem. Indeed, for f=rs and c=1
one has

-g:s=grs (C= 1)

and this integral represents the volume AT in the phase space, i. e.
(40 AT =AT.

On the other hand, it is shown that in this case also the development of the
state of the system in the course of time may be represented as a sequence
of successive infinitesimal canonical transformations.

Hence, as in the analytical mechanics, the result (41) can be interpreted
in the following way. If AN=p AT, of the representative points in the phase
space in the moment #, occupies a volume AI',=AT', then in some later
moment ¢, they will occupy another part of the phase space of the same volume
AT,=AT. Since AN=p, AT, =p,AT,, it follows

(42) p=¢p, = p, =const
and this may be written in the form

do 0
43 —=[p, H]+—=0.
(43) 7 -[p, H] w

Accordingly, the density of the representative points along their trajectories
in the phase space remains constant in the course of time, i.e. the Liouville’s
theorem remains valid in this generalized case also. Therefore, one can conclude
that the common statistical physics can be extended also to the case when the
Hamiltonian of the system depends on the derivatives of arbitrary order.
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