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Introduction. The classical laws of conservation of the linear momentum,
the moment of momentum of motion and of energy reflect the homogeneous and
isotropic structure of space and time. They are the sequence allowance of the
Galilei group. Namely, the invariance of laws of motion in relation to this
group involves the existence of the mentioned laws of coservation. They are
generaly valid, and also for motions of any continuous media. But the concrete
continuous media possesses specific properties. These properties and pecularities
reflect to the concrete laws of behaviour, for instance, to the equations of
motions, to the rheologic equations etc. On the other side, the equations of
motion of concrete continuous media can allow, i. e. can be invariant in rela-
tion to broader group, which is an embracing group for the Galilei group.
Using the Noether theorem [1] it is clear that such an enlargement of group
will bring to new laws of conservation. These supplementary laws, we can say,
are on internal way connected to the concrete media. Therefore, they represent
an important characteristic. Their knowledge gives the fundament for a more
deeply understanding of the process of motion. The purpose of this paper is
to study and form such an enlarged set of laws of conservation for the case
of one dimensional motion of nonlinear continuum.

1 The laws of conservation with geometricai nonlinearity.

The formulation of the laws of conservation is in direct connection with
the first Noether’s theorem [1] The conditions of applicability of this theorem,
as is known, require the variational formulation of the corresponding problem
[2]. In our case, that means, to give the variational formulation to the problem,
whose equations are:
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where #-time, x-coordinates, p -thed ensity, u-the displacement and v-the velocity
of particle.

The formulation of integral of action, respectively, Lagrangian density for
the problem, whose equations are given in advance, is not easy, and sometimes
even it is impossible. But there exist problems in which the Lagrangian’s
densities are easy to find, under the condition, of course, that this problem
permit the variational formulation. Especially the problem of finding of Lag-
rangian’s density is simplified, if we have to deal only with one equation.
Therefore, let us reduce the equations (1), (2) and (3) to only one equation,
introducing the substitutions
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in the above equations. It is easy to see that equations (1) and (2) proceed
to identities and the equation (3) into equation of the form
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where =242y, is the characteristic of the material. Thus we have reduced
the problem of variational formulation of one dimensional motion to the problem
of variational formulation of the equation (6). Now, it is easy to see that the
equation (6) is the Euler-Lagrange’s equation for the integral of action in the form:
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where & is the Lagrange’s density, t,, ,, x,, and x, dre the boundary of
dominion of integration.

From the theory of Lie groups [3, 4], it is known in what way are
constructed the groups of invariant of functional (7). By application of such
a proceeding, which we will not cite here, we find that the group of invariant
of functional (7) is given by the *general* generator of the group in the form:
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where a, b, b,, and b, are parameters of the group, by whose correct choice,
we obtain four mutually independent generators of the Lie group:
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By applying the first Noether’s theorem [2] we obtain the *general
(parametric) law of conservation in the form
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or in the equivalent integral formulation, in the form
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while _% is the Lagrange’s density in (6). If we substitute the corresponding
expressions from (12), (13) and (14) in (11), then for the integral form of
the ”’general‘ law of conservation, we have
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in which we have used and substituted the magnitude from (4) and the value
Z of Lagrange’s density from (7).
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From the fact that that the physical sense have only the laws of con-
servation of distinct generators of the group, substituting the parameters group
in expression (15), we finally obtain the following laws of conservation:

@) a=1, b,,=b,,=b;=0

X

2
{[u—-p7)t—xux]v+[p%—ocplnp—ocuxt]] dx +

dt
(16) x‘
1 p v* Y | *2 ’
+Hu—pvt—xu,] —-z)2+oc1np)+(——ocplnp—ocux>xJ =0,
2 2 X1
() b,=1, a=b,=b,=0
d [ (1 =
(17) ;f(——pv2+ocplnp+ocu)dx+(pv3—ocp'vlnp) =0,
t xI
X1 i :
(©) b,=1, a=b =b,=0
d [ 1 2 x
18 — | wodx+|u,[—v*+aln )+fi—oc Inp—ou, 2—0,
(18) dtf . [ (2 o)t —xplne
Xy .

d) b,=1, a=b,=b,=0

*2
=0.

X1

d [ 1
19 — vdx+|{— v*+aln
(19) dtf (2” 3 p)

X1

2. The laws of conservation with physical nonlinearity.
The physical nonlinearity, as it is known, derives from .the nonlinear
constitutive equations.

The case of onedimensional motion was studied by G. Klrchhoff and
G. Kauderer [4, 5]. Kirhhoff has found that equations of onedimensional
motion with nonlinear physical relation are of the form:
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where o and A, are the material characteristic of the media.

Kirchhoff also has constated that the equation (20) can be obtained as
the Euler-Lagrange’s equation from the functional of the form
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where

1 ou\? A [Ou\2] /ou\?
22 =—{{—)-?ll+—(— —1 1,
(22) < 2 [(Ox) [ 6 (0x) ](dx) }
is the Lagrange’s density of the the integral of action (21).

By applying the known procedure [1, 3, 4], the forming of the Lie group
of the invariant of equation (20) and the functional (21) is shown that the
group is determined by the expression (8).

If we use the relations (10) and (11) and substitute it in (12) and (13)
and if we substitute the corresponding value from (22) then we obtain the
following laws of conservations:
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