SOME EXAMPLES FOR NONLINEAR SUPERPOSITION

Vlajko Lj. Kocić

(Received February 12, 1977)

0. In papers [1], [2], [3], [4] connecting functions for some partial differential equations are obtained.

Let u, v be solutions of some partial differential equation N(U) = 0. Any function F depending on u and v, which is also a solution of N(U) = 0 will be called a connecting function for the equation N(U) = 0.

In this paper we propose a method for obtaining connecting functions for some second-order partial differential equations. These examples contain some results from [1], [2], [3], [4].

1. Start with the linear equation

(1.1)
$$\sum_{i,j=1}^{n} A_{ij} \frac{\partial^2 V}{\partial x_i \partial x_j} + \sum_{i=1}^{n} B_i \frac{\partial V}{\partial x_i} + CV = 0,$$

where A_{ij} , B_i , C are functions of x_1, \ldots, x_n .

Let $g: R \to R$ be a twice differentiable function and let T be an operator defined on a certain set of functions which will be specified in examples. Furthermore suppose that g^{-1} and T^{-1} exist.

Let F satisfy the following equation

(1.2)
$$g(TF) = C_1 g(Tu) + C_2 g(Tv)$$

where C_1 and C_2 are constants. From (1.2) it follows

(1.3)
$$F = T^{-1} \left(g^{-1} \left(C_1 g \left(T u \right) + C_2 g \left(T v \right) \right) \right).$$

Putting V = g(TU), equation (1.1) becomes

(1.4)
$$\sum_{i,j=1}^{n} A_{ij} \left(g'(TU) \frac{\partial^{2} TU}{\partial x_{i} \partial x_{j}} + g''(TU) \frac{\partial TU}{\partial x_{i}} \frac{\partial TU}{\partial x_{j}} \right) + \sum_{i=1}^{n} B_{i} g'(TU) \frac{\partial TU}{\partial x_{i}} + Cg(TU) = 0.$$

Let S be a linear operator defined on a set of functions, such that there exists S^{-1} . Then we have

(1.5)
$$S\left(\sum_{i,j=1}^{n} A_{ij} \left(g'\left(TU\right) \frac{\partial^{2} TU}{\partial x_{i} \partial x_{j}} + g''\left(TU\right) \frac{\partial TU}{\partial x_{i}} \frac{\partial TU}{\partial x_{j}}\right) + \sum_{i=1}^{n} B_{i} g'\left(TU\right) \frac{\partial TU}{\partial x_{i}} + Cg\left(TU\right)\right) = 0.$$

The following statements are valid:

U is a solution of equation (1.5) if and only if U is a solution of equation (1.4);

If u, v are solutions of equations (1.4) and (1.5) then F, given by (1.3) is also a solution of (1.4) and (1.5), i.e. F is a connecting function for these equations.

Equation (1.5), in general, is not a second-order partial differential equation. If T and S are given, we determine, if possible, g, A_{ij} , B_i , C so that (1.5) becomes a second-order partial differential equation.

2. Examples

1° Let TU = U and SU = U. Then, equation (1.5) becomes

$$\sum_{i,j=1}^{n} A_{ij} \left(g'(U) \frac{\partial^{2} U}{\partial x_{i} \partial x_{j}} + g''(U) \frac{\partial U}{\partial x_{i}} \frac{\partial U}{\partial x_{j}} \right) + \sum_{i=1}^{n} B_{i} g'(U) \frac{\partial U}{\partial x_{i}} + Cg(U) = 0$$

and a connecting function is given by

$$F = g^{-1} (C_1 g(u) + C_2 g(v)).$$

This result is obtained by J. D. Kečkić in [1] and [2], and is some special cases, by S. A. Levin in [3].

2° Let
$$TU = \int_{x_n^0}^{x_n} U(x_1, \ldots, x_n) dx_n + \varphi(x_1, \ldots, x_{n-1})$$
 and let $SU = \frac{\partial U}{\partial x_n}$.

Then, we have

$$\frac{\partial}{\partial x_{n}} \left\{ \sum_{i,j=1}^{n-1} A_{ij} \left[g^{\prime\prime} \cdot \left(\int_{x_{n}^{0}}^{\infty} \frac{\partial U}{\partial x_{i}} dx_{n} + \frac{\partial \varphi}{\partial x_{i}} \right) \cdot \left(\int_{x_{n}^{0}}^{\infty} \frac{\partial U}{\partial x_{j}} dx_{n} + \frac{\partial \varphi}{\partial x_{j}} \right) \right. \\
+ g^{\prime} \cdot \left(\int_{x_{n}^{0}}^{\infty} \frac{\partial^{2} U}{\partial x_{i} \partial x_{j}} dx_{n} + \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}} \right) \right] \\
+ \sum_{i=1}^{n-1} \left(A_{in} + A_{ni} \right) g^{\prime\prime} \cdot \left(\int_{x_{n}^{0}}^{\infty} \frac{\partial U}{\partial x_{i}} dx_{n} + \frac{\partial \varphi}{\partial x_{i}} \right) \cdot U + g^{\prime} \cdot \frac{\partial U}{\partial x_{i}} \\
+ A_{nn} \left(g^{\prime\prime} U^{2} + g^{\prime} \frac{\partial U}{\partial x_{n}} \right) + \sum_{i=1}^{n-1} B_{i} g^{\prime} \cdot \left(\int_{x_{n}^{0}}^{\infty} \frac{\partial U}{\partial x_{i}} dx_{n} + \frac{\partial \varphi}{\partial x_{i}} \right) + B_{n} g^{\prime} \cdot U + Cg \right\} = 0.$$

It follows upon differentiation in x_n , that the above equation becomes a second-order partial differential equation if

$$g(t) = C \exp(\alpha t)$$
 (C, α constants);
 $A_{ii} = 0; \frac{\partial B_i}{\partial x_n} = 0$ ($i = 1, ..., n - 1$);
 $A_{ij} + A_{ji} = 0$ ($i, j = 1, ..., n$; $i \neq j$).

Then we have

(2.1)
$$\alpha A_{nn} \frac{\partial^{2} U}{\partial x_{n}^{2}} + 2 \alpha^{2} A_{nn} U \frac{\partial U}{\partial x_{n}} + \alpha \left(\frac{\partial A_{nn}}{\partial x_{n}} + B_{n} \right) \frac{\partial U}{\partial x_{n}} + \alpha^{2} \frac{\partial A_{nn}}{\partial x_{n}} U^{2} + \alpha \sum_{i=1}^{n-1} B_{i} \frac{\partial U}{\partial x_{i}} + \alpha \frac{\partial B_{n}}{\partial x_{n}} U + \frac{\partial C}{\partial x_{n}} = 0,$$

and φ satisfies the equation

$$\alpha A_{nn} \left(\frac{\partial U}{\partial x_n} + \alpha U^2 \right) + \alpha B_n U + C + \alpha \sum_{i=1}^{n-1} B_i \left(\int_{x_n^0}^{x_n} \frac{\partial U}{\partial x_i} dx_n + \frac{\partial \varphi}{\partial x_i} \right) = 0.$$

Since the function φ does not depend on x_n , for $x_n = x_n^0$ the above equation reduces to

(2.2)
$$\alpha \sum_{i=1}^{n-1} B_i \frac{\partial \varphi}{\partial x_i} + \left(\alpha A_{nn} \left(\frac{\partial U}{\partial x_n} + \alpha U^2 \right) + \alpha B_n U + C \right) \bigg|_{x_n = x_n^0} = 0.$$

The function ϕ is not arbitrary, but has to be a solution of the above first-order partial differential equation.

Hence, we conclude: If u and v are solutions of equation (2.1), if φ_1 and φ_2 are solutions of equation (2.2) for U = u and U = v, respectively, then

$$F = \frac{\partial}{\partial x_n} \left(\log \left(C_1 \exp \left(\int_{x_n^0}^{x_n} u \, dx_n + \varphi_1 \right) + C_2 \exp \left(\int_{x_n^0}^{x_n} v \, dx_n + \varphi_2 \right) \right) \right),$$

is also a solution of equation (2.1).

This result was proved in [2] by J. D. Kečkić by a different method. Also some special cases of the equation (2.1) and nonlinear superpositions for these equations are given in papers [3] and [4].

3° Let
$$TU = \frac{\partial U}{\partial x_n}$$
 and $SU = \int_{x_n^0}^{x_n} U dx_n$. Then we have
$$\int_{x_n^0}^{x_n} \left\{ \sum_{i,j=1}^n A_{ij} \left(g' \left(\frac{\partial U}{\partial x_n} \right) \frac{\partial^3 U}{\partial x_i \partial x_j \partial x_n} + g'' \left(\frac{\partial U}{\partial x_n} \right) \frac{\partial^2 U}{\partial x_i \partial x_n} \cdot \frac{\partial^2 U}{\partial x_j \partial x_n} \right) + \sum_{i=1}^n B_i g \left(\frac{\partial U}{\partial x_n} \right) \frac{\partial^2 U}{\partial x_i \partial x_n} + Cg \left(\frac{\partial U}{\partial x_n} \right) \right\} dx_n = 0.$$

If
$$A_{ij} + A_{ji} = 0$$
, $B_i = \frac{\partial}{\partial x_n} (A_{in} + A_{ni})$ $(i, j = 1, ..., n-1)$,
$$B_n = \frac{\partial A_{nn}}{\partial x_n} + D(x_1, ..., x_n), C = \frac{\partial D}{\partial x_n},$$

then the above equation becomes

(2.3)
$$A_{nn}g'\left(\frac{\partial U}{\partial x_n}\right)\frac{\partial^2 U}{\partial x_n^2} + \sum_{i=1}^{n-1} \left(A_{in} + A_{ni}\right)g'\left(\frac{\partial U}{\partial x_n}\right)\frac{\partial^2 U}{\partial x_i \partial x_n} + Dg\left(\frac{\partial U}{\partial x_n}\right) = 0,$$

and we get the result: If u and v are solutions of equation (2.3) then

$$F = \int_{x_0}^{x_n} g^{-1} \left(C_1 g \left(\frac{\partial u}{\partial x_n} \right) + C_2 g \left(\frac{\partial v}{\partial x_n} \right) \right) dx_n + \varphi (x_1, \dots, x_{n-1})$$

is also a solution of this equation (φ is an arbitrary function).

4º Let
$$TU = \frac{\partial U}{\partial x_n} + U$$
 and $SU = \int_{x_n^0}^{\infty} U dx_n$. Then, equation (1.5) becomes:

$$\int_{x_n^0}^{x_n} \left\{ \sum_{i,j=1}^n A_{ij} \left(g'' \left(\frac{\partial U}{\partial x_n} + U \right) \left(\frac{\partial^2 U}{\partial x_i \partial x_n} + \frac{\partial U}{\partial x_i} \right) \left(\frac{\partial^2 U}{\partial x_j \partial x_n} + \frac{\partial U}{\partial x_j} \right) + g' \left(\frac{\partial U}{\partial x_n} + U \right) \left(\frac{\partial^3 U}{\partial x_i \partial x_j \partial x_n} + \frac{\partial^2 U}{\partial x_i \partial x_j} \right) \right)$$

$$+ \sum_{i=1}^n B_i g' \left(\frac{\partial U}{\partial x_n} + U \right) \left(\frac{\partial^2 U}{\partial x_i \partial x_n} + \frac{\partial U}{\partial x_i} \right) + Cg \left(\frac{\partial U}{\partial x_n} + U \right) \right\} dx_n = 0.$$
If $A_{ij} + A_{ji} = 0$, $B_i = \frac{\partial}{\partial x_n} (A_{in} + A_{ni})$ $(i, j = 1, \dots, n-1)$,
$$B_n = \frac{\partial A_{nn}}{\partial x_n} + D(x_1, \dots, x_n), C = \frac{\partial D}{\partial x_n}$$

then the above equation becomes

(2.4)
$$\sum_{i=1}^{n-1} (A_{in} + A_{ni}) g' \left(\frac{\partial U}{\partial x_n} + U \right) \left(\frac{\partial^2 U}{\partial x_i \partial x_n} + \frac{\partial U}{\partial x_i} \right) + A_{nn} g' \left(\frac{\partial U}{\partial x_n} + U \right) \left(\frac{\partial^2 U}{\partial x_n^2} + \frac{\partial U}{\partial x_n} \right) + Dg \left(\frac{\partial U}{\partial x_n} + U \right) = 0.$$

For the above equation the nonlinear superposition is given by

$$F = e^{-x_n} \int_{x_n^0}^{x_n} e^{-x_n} g^{-1} \left(C_1 g \left(\frac{\partial u}{\partial x_n} + u \right) + C_2 g \left(\frac{\partial v}{\partial x_n} + v \right) \right) dx_n + e^{-x_n} \varphi (x_1, \dots, x_{n-1}),$$

where u, v are solutions of equation (2.4) and φ is an arbitrary function.

REFERENCES

- [1] J. D. Kečkić, On nonlinear superpostion, Math. Balkanica 2 (1972), 88-93.
- [2] J. D. Kečkić, On nonlinear superposition II. Math. Balkanica 3 (1973), 206-212.
- [3] S. E. Jones and W. F. Ames, Nonlinear superposition, J. Math. Anal. Appl. 17 (1967), 484-487.
- [4] S. A. Levin, Principles on nonlinear superposition, J. Math. Anal. Appl. 30 (1970), 197-205.