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ON ALMOST-TRACTABLE SPACES 1
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The objective of the present paper is to examine a class of topological
spaces characterised by the property that none of the nonvoid proper regularly
closed sets in such a space is a fixed set of the group of autohomeomorphisms
of the space. Such spaces are said to be almost-tractable and the class of almost-
-tractable spaces contains the class of tractable spaces introduced by the present
author in [2]. In the first theorem of the present paper we have proved a necessary
and sufficient condition for a topological space to be almost-tractable. Together with
other results it has been observed that almost-tractable spaces are productive. In a
paper [1] we have introduced the notion of schistic space and here it has been
shown that a schistic space with infinite dispersion character is an almoss-tractable
space. However, a schistic space with finite dispersion character need not be almost-
-tractable. Further, we have also proved a necessary and sufficient condition
for a regular almost-tractable space to be tractable and it has been observed
that every nonprincipal ultraspace which are maximal elements of the lattice
of topologies are maximal almost-tractable T, topologies.

A topological space (X, 7) is said to be a tractable space if for every
nonvoid proper closed set K there exists an autohomeomorphism g of (X, )
such that g(K)=K. If .7 be the collection of all the images of a nonvoid open
set O of the space (X, 7), then . is said to be an of-collection of (X, F)
generated by O or simply an of-collection of the space, when there is no
chance of confusion. The union of the members of . is said to be an of-set
of the space generated by O or simply an of-set of the space. The least cardinal
number of a nonvoid open set of a topological space is said to be the
dispersion character ot the space. The set of all the images of a point of a
topological space (X, 7) is said to be an orbit of the space. An infinite subset
of a topological space is said to be an i-set of the space if its complement is
also infinite. An infinite topological space (X, ) is said to be a schistic space
if for every i-set A of the space there exists an autohomeomorphism g of the
space (X, /) such that g(4)C 4, where C denotes proper inclusion. For other
terms and definitions readers are referred to [3], [4], [5], [6] and [7].

Definition. A topological space (X, F) is said to be an almost-
tractable space if for every proper nonvoid regularly closed set K there exists
an autohomeomorphism g of the space (X, #) such thas g(K)#K.
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In the following theorem we prove a necessary and sufficient condition
for a topological space to be almost-tractable.

Theorem 1. A4 topological space (X, 7) is almost-tractable if and only
if every of-set of the space is dense.

Proof. Let the space (X, ) be almost-tractable. If it is assumed that
there exists an of-set U of the space which is nondense, then CU is a nonvoid
proper regularly closed subset of (X, #). As the space (X, 7) is almost-tractable,
there exists an autohomeomorphism g of the space (X, ) such that g (CU)-~CU.
Consequently, we have g(U)-U. But, as U is an of-set of the space, it is a
fixed set of the group of autohomeomorphisms of the space (X, 7). Hence we
have g(U)=U, a contradiction. It follows that every of-set of the space is dense.

To establish the converse result, let us assume that every of-set of the
space (X, /) is dense. If it is assumed that the space (X, ) is not an almost-
-tractable space, then there exists a nonvoid proper regularly closed set K such
that for any autohomeomorphism g* of the space (X, 7)g*(K)=K. Now it is
obvious that Int K is an of-set of the space. But it is nondense, a contradiction.
Hence it follows that the space (X, ) is almost-tractable.

Theorem 2. If (X, F) be an almost-tractable space containing a set of
second category, then the space (X, F) is a Baire space.

Proof. If it is assumed that the space (X, ) is not a Baire space, then
there exists an open set O’ of (X, ) which is a set of first category. Let .5
be the of-collection of the space (X, 7) generated by O'. Then clearly every
member of the of-collection .7 is a set of first category. Also it is well
known [see [7]] that the union of any family of open sets of first category is
a set of first category. Hence it follows that the union U of the members
of . is a set of first category. Also U is an of-set of the space and
consequently CU is nowhere dense. Hence it follows that X is a set of first
category. It contradicts the hypothesis that the space (X, 7) contains a set of
second category. Hence it follows that the space (X, 7) is a Baire space.

In the following the class of all the of-sets of a topological space (X, 7)
will be denoted by . and the intersection of all the members of & is said
to be the s-set of the space (X, 7).

Lemma 1. If (X, F) be an almost-tractable space, then every orbit of the
space is either dense or nowhere dense.

Proof. Let 4 be an orbit of the space (X, 7). If it is assumed that 4
is neither dense nor nowhere dense, then Int C/ 4@ and Cl A4 is a proper
nonvoid regularly closed subset of (X, 7). Hence, as the space (X, 7) is almost-
-tractable, there exists an autohomeomorphism g of the space (X, 7) such
that g(CIA)#CIA. As A is an orbit of the space, it is obvious that CI4 is the
union of a collection of orbits of the space. It follows that g(CId)=CId, a
contradiction. Hence it follows that every orbit of the space (X, ) is either
dense or nowhere dense.

Lemma 2. If (X, ) be an almost-tractable space and if there exists a
nonvoid open set which, as a subspace, satisfies the second axiom of countability,
then the s-set of the space is the intersection of a countable subcollection of the
collection of of-sets of the space.
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Proof. Let O be an open set which as a subspace satisfies the second
axiom of countability. Let "B={0,:i€ N} be a countable base of the subspace O.
Let O* be a nonvoid open set of (X, /). Since the space (X, 7) is almost-
-tractable there exists an autohomoeomorphism g of the space (X, ) such
that g(0*)NO+#@. It follows that there exists a member O; of ‘B such
that O, Lg(O*) and consequently the of-set of the space (X, ) generated by O;
is contained in the of-set of the space (X, ) generated by O*. Now, if %’ be
the collection of all the of-sets of the space (X, ) generated by the members
of 7B, then clearly every member of the collection of of-sets ,% of the space (X, )
contains a member of %'. Also ,%’ is countable. It follows that the s-set of the
space” (X, #) is the intersection of a countable family %’ of of-sets of the
space (X, 7).

Theorem 3. Let (X, F) be an almost-tractable space and O be a nonvoid
open subset which, as a subspace, satisfies the second axiom of countability. Then
the space (X, F) is a Baire space if and only if the s-set of the space, as a
subspace, is a Baire space.

Proof. Let S be the s-set of the space (X, ) and let S be, as a subspace,
a Baire space. Then obviously (X, ) contains a set of second category and
consequently it follows from the Theorem 2 that the space, (X, 7) is a
Baire space.

To establish the converse result, let us assume that the space (X, ) is a
Baire space. Since S is the intersection of a countable family of of-sets of the
space (X, ) and as the complement of every of-sets of the space (X, 7) is
nowhere dense subset of (X, ), CS is a set of first category. Hence, as the
space (X, #) is a Baire space, S is obviously nonvoid and it is a set of second
category. Further, it is obvious that S is the union of the class of all the dense
orbits of the space (X, ). Again, it is obvious that the restriction of every
autohomeomorphism of the space (X, 7 to S is an autohomeomorphism of
the subspace S. It follows that every of-collection of the subspace S forms a
cover of the subspace S and consequently it follows from the Theorem 1 of [2]
that the space S is a tractable space. Since every tractable space is almost-
-tractable, it follows from the Theorem 2 that the subspace S is a Baire space.

Corollary. If (X, F) be an almost-tractable complete metric space
satisfying the second axiom of countability, then the s-set of the space is, as a
subspace, a topologically complete tractable space.

Proof. As the space (X, /) is a complete metric space, it is a Baire
space. Again, as the space satisfies the second axiom of countability, it is obvious
from the Lemma 2 that the s-set S of the space (X, ) is a Ggset of (X, F).
Also CS is a set of first category and consequently S is nonvoid. Hence it
follows from the Theorem 1.2 of [7] that S is topologically complete. Also it
follows from the above theorem that the subspace S is tractable. Hence we
have the required result.

Theorem 4. The one-point compactification, of a Hausdorff tractable
space (X, F) is an almost-tractable space.

Proof. Let (X* #*) be the one-point compactification [see[5]] of the
Hausdorff tractable space (X, ) and let X* — X={w}. Now, if O* be a nonvoid
open set of the space (X*, 7*), then O=0*NX is a nonvoid open set of the
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space (X, ). Further, if g is an autohomeomorphism of the space (X, #) and g*
be a one-one correspondence of the space (X*, F*) onto itself such that for
any point x of X, g*(x)=g(x) and g*(w) =, then g* is obviously an
autohomeomorphism of the space (X*, Z*). Further, as the space (X, J) is
tractable, it is obvious from the above arguments that every of-set of the
space (X*, 7*) contains X. Consequently every of-set of the space (X*, 7*) is
dense in (X*, 7*) and the space (X*, 7*) is almost-tractable.

In this connection it is to be remarked that every infinite discrete space
being a Hausdorff tractable space its one-point compactification is an almost-
-tractable space. Further, it can be easily shown that the subspace J=(0, 1) of
the real line is a Hausdorff tractable space and consequently its one-point
compactification is an almost-tractable space.

The following theorem shows that almost-tractable spaces are productive.

Theorem 5. The product space of a family of almost-tractable spaces
is an almost-tractable space.

Proof. Let (X, 7) be the product space of a family of almost-tractable
spaces {Xp, Fp): B} If it is assumed that the product space (X, ) is not
an almost-tractable space, then there exists an of-set U of the space (X, F)

which is nondense in (X, 7). Let us write U= II 0, where 03 75 and 0y =X,
ser
for all but finite number of indices. Now, as U is a nonvoid nondense open

subest or the product space (X, /), there exists a member O of the family of
sets {Og : &1} such that Oy« is a nonvoid nondense open subset of the corresponding
factor space (Xg«, Jp+). As, by hypothesis, the space (Xg«, Fp+) is almost-tractable,
there exists an autohomeomorphism fy« of the space (Xps, Fg+) such that
Joe (Clygs Opr)#Clps Og+ and consequently we have fp« (Ogs )5 Ogs. Let {gg: BT}
be a class of autohomeomorphisms of the factor spaces such that gg« =fpe
and gy =0, for every B£B* where {65:8E I} is the class of identity
homeomorphisms of the factor spaces. Let (xg) be a point of the product
space (X, /). It is well known that the function g*:(X, 7) — (X, 7) defined by
the g* ((x)) =(gs (xs)) maps the product space homeomorphically onto itself.
Also it is obvious from the construction of the function g* that g* (U)#U.
But, as U is an of-set of the product space, we have g*(U)=U, a contradic-
tion. Hence it follows that U is a dense subset of the product space and
consequently it follows from the Theorem I that (X, 7) is almost-tractable.

Let us consider the two point space X'={0, 1} having its topology 7= {@,
{0, 1}, {1}}. Indeed the space X is an almost-tractable space and consequently
it follows from the above theorem that an Alexandroff cube of order n
which is the product space of n copies of two point space X is an almost-
-tractable space. Further, a two point discrete space D={0, 1} is obviously a
tractable space. A Cantor cube of order m>¥, is the product space of m
copies of two point space D. As tractable spaces are productive [see[2]], a
Cantor cube of order m is a tractable space. Further, as every tractable space
is almost-tractable, a topological space which is the product space of an
Alexandroff cube of order » and a Cantor cube of order m is an almost-
tractable space.

Theorem6. If (X, 7) be a schistic space with infinite dispersion character,
then the space (X, ) is an almost-tractable space.
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Proof. It it assumed that the space (X, ) is not an almos-tractable
space, then there exists an of-set of the space U such that CIU# X. Consequently CU
has nonvoid interior. Further, as the dispersion character of the space is
infinite CU is an i-set of the space. Hence there exist an autohomeomorphism g
of the space (X, ) such that g(CU)CCU. It follows that g(U)#U and
consequently U is not an of-set of the space, a contradiction. Hence it follows
that the space (X, ) is an almost-tractable space.

In this connection it is to be remarked that if the dispersion of a schistic
space is finite, then the space need not be an almost-tractable space. Thus
if (X, 7) be an infinite topological space such that 7= (x, }/ (»)), where x#y
and € (x, })/(y)) is a principal ultraspace [sec[4, 8]], then it can be easily
shown that the space (X, ) is a schistic space with finite dispersion character.
However, the space (X, ) is not an almost-tractable space. For, although {x, y}
is a proper nonvoid regularly closed subset of the space (X, ), g{x, y}={x, y}
for every autohomeomorphism g of the space (X, ).

Definition. A decomposition of a topological space (X, ) is said to
be an almost upper semicontinuous decomposion if for every nonvoid regularly
open set O, the union of all the members of the decomposition contained
in O is open.

It is well known that the class of orbits of a topological space (X, 7)
forms a decomposition of the space. Here the decomposition of a topological
space consisting of the orbits of a topological space (X, ) will be denoted by <.

In the following theorem we prove a necessary and sufficient condition
for a regular almost-tractable space to be a tractable space.

Theorem 7. A regular almost-tractable space (X, F) is tractable if and
only if the decomposition ) is almost upper semi-continuous.

Proof. To prove the ”if” part of the theorem, let us assume that the
decomposition & is almost upper semi-continuous. If it is assumed that the
space (X, /) is not a tractable space, then there exists an orbit P of the
space (X, 7) which is nondense. Since the space is regular there exists a proper
regularly open set O such that CIPC O. Let V be the union of all the members
of the decomposition < which are contained in O. As, by hypothesis, the
decomposition %) is almost upper semi-continuous, ¥V is a proper regularly open
subset of (X, F). Further, as ¥ is the union of a nonvoid collection of members
of 9, CIV is obviously the union of a nonvoid collection of membes of the
decomposition ). Also CIV is a proper subset of (X, ). Hence there exists
an autochomeomorphism g of the space (X, F) such that g(CIV)#C/V. But,
as CIV is the union of a collection of orbits of the space, we have g (CIV)=ClV,
a contradiction. Hence it follows that every orbit of the space is dense.
Consequently every of-collection of the space is a cover of the space and it
follows from the Theorem 1 of [2] that the space (X, ) is tractable.

The “only if” part of the theorem can be easily established.

Corollary. A regular almost-tractable space (X, F) is homogeneous if
and only if the decomposition D is upper semi-continuous.

Proof. If the space (X, /) is homogeneous, then the decomposition )
is obviously upper semi-continuous.

3%
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To establish the converse result, let us consider that the decomposition %)
is upper semi-continuous [see[6]]. Indeed every upper semi-continuous
decompostition is almost upper semi-continuous. Therefore, it follows from the
above theorem that the space (X, ) is tractable. Now, if the space (X, J) is
assumed to be non-homogeneous, then <) is non-degenerate. Let P be a member
of 9 and x be a point in P. As the space (X, 7) is regular, it satisfies
R,-axiom [see[3]]. Consequently, CI/{x} is an e-set of the space [see [2]]. Since P
is an orbit of the space CI{x} is clearly contained in P Now, C(CI{x})
contains all the members of the decomposition %) excepiing P. As 9 is
nondegenerate and upper semi-continuous, the union of the collection of the
members of 9 contained in C(C/{x}) is a nonvoid open set. It follows that P
is a proper closed subset of (X, 7). But, as the space (X, .f) is tractable P is
dense, a contradiction. Hence it follows that < is degenerate and the space (X, )
is homogeneous.

Let @ (p, }/) be a nonprincipal ultraspace [see[4, 8]] on a set X. We call
the point p of X to be the centre of the ultraspace € (p, }/).

Theorem 8. If (X, ) be a topological space such that the topology F
is the infimum of finite number of nonprincipal uliraspaces, then the space (X, F)
is an almost-tractable space.

Proof Let J= A C(p;, }[;) and let A, be the set of centres of the
members of the collectlon of nonprincipal ultraspaces {8 (pi» 1)} Let K be a

1<i<n

nonvoid proper regularly closed subest of the space (X, ). Obviously K is a
clopen subset of the space. Let a point x& K such that x{- 4, and a point y&cCK
such that yd4,. Let g be a one-one correspondence of (X #) onto itself such
that g(x)=y, g(y) x and g(2)=z, for every zEX—{x, y}. Let O be an open
set. We write O=0,UOg, where O,=(X—{x, y})N 0 and Oz = 0 — (X —{x, y}).
As (X—{x, y}) is a clopen subset of the space, O, and Og are obviously open
sets of the space (X, 7). Further, from the construction of the mapping g we
have g (0)=g(0,)\Ug(0s)=0,Ug(0p). If g(0p) is nonvoid, then obviously it
consists of isolated points of the space (X, 7). It follows that g(0) and g~!(0)
are open sets of the space (X, 7). Hence it follows that g is an autohomeomor-
phism of the space (X, 7). Also we have g(K)## K and consequently the
space (X, ) is an almost-tractable space.

It has been shown by A. K. Steiner in (8] that every T,-topology is
the infimum of all the nonprincipal ultraspaces finer than it. Now, from the
above theorem it follows that a topological space having its topology as a
nonprincipal ultraspace is an almost-tractable space. From the above facts it
follows that every maximal [see [9]] almost-tractable T,-topology is a noprincipal
ultraspace.

Further, it is to be mentioned that the space (X, ) of the Theorem 8
can be easily shown to be a regular space. However, the decomposition of the
space 9 is not upper semi-continuous. For, every singleton contained in X— 4,
is a clopen subset of (X, 7) and it can be easily shown that X —4, is a member
of the decompoisition <) and consequently, if < is to be an almost upper
semi-continuous decomposmon A, should be an open set. However, it is not
true and, therefore, % is not an almost upper semi-continuous decomposition.
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