ON ALMOST-TRACTABLE SPACES I

S. P. Chakraborty

(Received December 25, 1973)

The objective of the present paper is to examine a class of topological spaces characterised by the property that none of the nonvoid proper regularly closed sets in such a space is a fixed set of the group of autohomeomorphisms of the space. Such spaces are said to be almost-tractable and the class of almost-tractable spaces contains the class of tractable spaces introduced by the present author in [2]. In the first theorem of the present paper we have proved a necessary and sufficient condition for a topological space to be almost-tractable. Together with other results it has been observed that almost-tractable spaces are productive. In a paper [1] we have introduced the notion of schistic space and here it has been shown that a schistic space with infinite dispersion character is an almoss-tractable space. However, a schistic space with finite dispersion character need not be almost-tractable. Further, we have also proved a necessary and sufficient condition for a regular almost-tractable space to be tractable and it has been observed that every nonprincipal ultraspace which are maximal elements of the lattice of topologies are maximal almost-tractable T_1 topologies.

A topological space (X, \mathcal{F}) is said to be a tractable space if for every nonvoid proper closed set K there exists an autohomeomorphism g of (X, \mathcal{F}) such that $g(K) \neq K$. If \mathcal{F} be the collection of all the images of a nonvoid open set O of the space (X, \mathcal{F}) , then \mathcal{F} is said to be an of-collection of (X, \mathcal{F}) generated by O or simply an of-collection of the space, when there is no chance of confusion. The union of the members of \mathcal{F} is said to be an of-set of the space generated by O or simply an of-set of the space. The least cardinal number of a nonvoid open set of a topological space is said to be the dispersion character of the space. The set of all the images of a point of a topological space (X, \mathcal{F}) is said to be an orbit of the space. An infinite subset of a topological space is said to be an i-set of the space if its complement is also infinite. An infinite topological space (X, \mathcal{F}) is said to be a schistic space if for every i-set A of the space there exists an autohomeomorphism g of the space (X, \mathcal{F}) such that $g(A) \subset A$, where \subset denotes proper inclusion. For other terms and definitions readers are referred to [3], [4], [5], [6] and [7].

Definition. A topological space (X, \mathcal{J}) is said to be an almost-tractable space if for every proper nonvoid regularly closed set K there exists an autohomeomorphism g of the space (X, \mathcal{J}) such that $g(K) \neq K$.

In the following theorem we prove a necessary and sufficient condition for a topological space to be almost-tractable.

Theorem 1. A topological space (X, \mathcal{J}) is almost-tractable if and only if every of-set of the space is dense.

Proof. Let the space (X, \mathcal{F}) be almost-tractable. If it is assumed that there exists an of-set U of the space which is nondense, then CU is a nonvoid proper regularly closed subset of (X, \mathcal{F}) . As the space (X, \mathcal{F}) is almost-tractable, there exists an autohomeomorphism g of the space (X, \mathcal{F}) such that $g(CU) \neq CU$. Consequently, we have $g(U) \neq U$. But, as U is an of-set of the space, it is a fixed set of the group of autohomeomorphisms of the space (X, \mathcal{F}) . Hence we have g(U) = U, a contradiction. It follows that every of-set of the space is dense.

To establish the converse result, let us assume that every of-set of the space (X, \mathcal{J}) is dense. If it is assumed that the space (X, \mathcal{J}) is not an almost-tractable space, then there exists a nonvoid proper regularly closed set K such that for any autohomeomorphism g^* of the space $(X, \mathcal{J})g^*(K) = K$. Now it is obvious that Int K is an of-set of the space. But it is nondense, a contradiction. Hence it follows that the space (X, \mathcal{J}) is almost-tractable.

Theorem 2. If (X, \mathcal{I}) be an almost-tractable space containing a set of second category, then the space (X, \mathcal{I}) is a Baire space.

Proof. If it is assumed that the space (X, \mathcal{J}) is not a Baire space, then there exists an open set O' of (X, \mathcal{J}) which is a set of first category. Let \mathcal{J} be the of-collection of the space (X, \mathcal{J}) generated by O'. Then clearly every member of the of-collection \mathcal{J} is a set of first category. Also it is well known [see [7]] that the union of any family of open sets of first category is a set of first category. Hence it follows that the union U of the members of \mathcal{J} is a set of first category. Also U is an of-set of the space and consequently CU is nowhere dense. Hence it follows that X is a set of first category. It contradicts the hypothesis that the space (X, \mathcal{J}) contains a set of second category. Hence it follows that the space (X, \mathcal{J}) is a Baire space.

In the following the class of all the of-sets of a topological space (X, \mathcal{I}) will be denoted by \mathcal{S} and the intersection of all the members of \mathcal{S} is said to be the s-set of the space (X, \mathcal{I}) .

Lemma 1. If (X, \mathcal{F}) be an almost-tractable space, then every orbit of the space is either dense or nowhere dense.

Proof. Let A be an orbit of the space (X, \mathcal{J}) . If it is assumed that A is neither dense nor nowhere dense, then Int $Cl \ A \neq \emptyset$ and $Cl \ A$ is a proper nonvoid regularly closed subset of (X, \mathcal{J}) . Hence, as the space (X, \mathcal{J}) is almost-tractable, there exists an autohomeomorphism g of the space (X, \mathcal{J}) such that $g(ClA) \neq ClA$. As A is an orbit of the space, it is obvious that ClA is the union of a collection of orbits of the space. It follows that g(ClA) = ClA, a contradiction. Hence it follows that every orbit of the space (X, \mathcal{J}) is either dense or nowhere dense.

Lemma 2. If (X, \mathcal{F}) be an almost-tractable space and if there exists a nonvoid open set which, as a subspace, satisfies the second axiom of countability, then the s-set of the space is the intersection of a countable subcollection of the collection of of-sets of the space.

Proof. Let O be an open set which as a subspace satisfies the second axiom of countability. Let $\mathcal{B} = \{O_i : i \in N\}$ be a countable base of the subspace O. Let O^* be a nonvoid open set of (X, \mathcal{F}) . Since the space (X, \mathcal{F}) is almost-tractable there exists an autohomoeomorphism g of the space (X, \mathcal{F}) such that $g(O^*) \cap O \neq \emptyset$. It follows that there exists a member O_j of \mathcal{B} such that $O_j \subseteq g(O^*)$ and consequently the of-set of the space (X, \mathcal{F}) generated by O_j is contained in the of-set of the space (X, \mathcal{F}) generated by the members of \mathcal{B} , then clearly every member of the collection of of-sets \mathcal{F} of the space (X, \mathcal{F}) contains a member of \mathcal{F}' . Also \mathcal{F}' is countable. It follows that the s-set of the space (X, \mathcal{F}) is the intersection of a countable family \mathcal{F}' of of-sets of the space (X, \mathcal{F}) .

Theorem 3. Let (X, \mathcal{F}) be an almost-tractable space and O be a nonvoid open subset which, as a subspace, satisfies the second axiom of countability. Then the space (X, \mathcal{F}) is a Baire space if and only if the s-set of the space, as a subspace, is a Baire space.

Proof. Let S be the s-set of the space (X, \mathcal{F}) and let S be, as a subspace, a Baire space. Then obviously (X, \mathcal{F}) contains a set of second category and consequently it follows from the Theorem 2 that the space, (X, \mathcal{F}) is a Baire space.

To establish the converse result, let us assume that the space (X, \mathcal{F}) is a Baire space. Since S is the intersection of a countable family of of-sets of the space (X, \mathcal{F}) and as the complement of every of-sets of the space (X, \mathcal{F}) is nowhere dense subset of (X, \mathcal{F}) , CS is a set of first category. Hence, as the space (X, \mathcal{F}) is a Baire space, S is obviously nonvoid and it is a set of second category. Further, it is obvious that S is the union of the class of all the dense orbits of the space (X, \mathcal{F}) . Again, it is obvious that the restriction of every autohomeomorphism of the space (X, \mathcal{F}) to S is an autohomeomorphism of the subspace S. It follows that every of-collection of the subspace S forms a cover of the subspace S and consequently it follows from the Theorem 1 of [2] that the space S is a tractable space. Since every tractable space is almost-tractable, it follows from the Theorem 2 that the subspace S is a Baire space.

Corollary. If (X, \mathcal{F}) be an almost-tractable complete metric space satisfying the second axiom of countability, then the s-set of the space is, as a subspace, a topologically complete tractable space.

Proof. As the space (X, \mathcal{F}) is a complete metric space, it is a Baire space. Again, as the space satisfies the second axiom of countability, it is obvious from the Lemma 2 that the s-set S of the space (X, \mathcal{F}) is a G_8 -set of (X, \mathcal{F}) . Also CS is a set of first category and consequently S is nonvoid. Hence it follows from the Theorem 1.2 of [7] that S is topologically complete. Also it follows from the above theorem that the subspace S is tractable. Hence we have the required result.

Theorem 4. The one-point compactification, of a Hausdorff tractable space (X, \mathcal{I}) is an almost-tractable space.

Proof. Let (X^*, \mathcal{J}^*) be the one-point compactification [see [5]] of the Hausdorff tractable space (X, \mathcal{J}) and let $X^* - X = \{\omega\}$. Now, if O^* be a nonvoid open set of the space (X^*, \mathcal{J}^*) , then $O = O^* \cap X$ is a nonvoid open set of the

space (X, \mathcal{J}) . Further, if g is an autohomeomorphism of the space (X, \mathcal{J}) and g^* be a one-one correspondence of the space (X^*, \mathcal{J}^*) onto itself such that for any point x of X, $g^*(x) = g(x)$ and $g^*(\omega) = \omega$, then g^* is obviously an autohomeomorphism of the space (X^*, \mathcal{J}^*) . Further, as the space (X, \mathcal{J}) is tractable, it is obvious from the above arguments that every of-set of the space (X^*, \mathcal{J}^*) contains X. Consequently every of-set of the space (X^*, \mathcal{J}^*) is dense in (X^*, \mathcal{J}^*) and the space (X^*, \mathcal{J}^*) is almost-tractable.

In this connection it is to be remarked that every infinite discrete space being a Hausdorff tractable space its one-point compactification is an almost-tractable space. Further, it can be easily shown that the subspace J=(0, 1) of the real line is a Hausdorff tractable space and consequently its one-point compactification is an almost-tractable space.

The following theorem shows that almost-tractable spaces are productive.

Theorem 5. The product space of a family of almost-tractable spaces is an almost-tractable space.

Proof. Let (X, \mathcal{I}) be the product space of a family of almost-tractable spaces $\{X_{\beta}, \mathcal{F}_{\beta}\}: \beta \in \Gamma\}$. If it is assumed that the product space (X, \mathcal{F}) is not an almost-tractable space, then there exists an of-set U of the space (X, \mathcal{I}) which is nondense in (X, \mathcal{J}) . Let us write $U = \prod_{\beta \in \mathcal{J}_{\beta}} 0_{\beta}$, where $0_{\beta} \in \mathcal{J}_{\beta}$ and $0_{\beta} = X_{\beta}$ $_{\beta\in\Gamma}$ for all but finite number of indices. Now, as U is a nonvoid nondense open subest of the product space (X, \mathcal{J}) , there exists a member O_{β^*} of the family of sets $\{O_{\beta}: \beta \in \Gamma\}$ such that O_{β^*} is a nonvoid nondense open subset of the corresponding factor space $(X_{\beta^*}, \mathcal{J}_{\beta^*})$. As, by hypothesis, the space $(X_{\beta^*}, \mathcal{J}_{\beta^*})$ is almost-tractable, there exists an autohomeomorphism f_{β^*} of the space $(X_{\beta^*}, \mathcal{F}_{\beta^*})$ such that $f_{\beta^*}(Cl_{\mathcal{I}\beta^*}O_{\beta^*}) \neq Cl_{\mathcal{I}\beta^*}O_{\beta^*}$ and consequently we have $f_{\beta^*}(O_{\beta^*}) \neq O_{\beta^*}$. Let $\{g_{\beta}: \beta \in \Gamma\}$ be a class of autohomeomorphisms of the factor spaces such that $g_{\beta^*} = f_{\beta^*}$ and $g_{\beta} = \sigma_{\beta}$, for every $\beta \neq \beta^*$, where $\{\sigma_{\beta} : \beta \in \Gamma\}$ is the class of identity homeomorphisms of the factor spaces. Let (x_{β}) be a point of the product space (X, \mathcal{I}) . It is well known that the function $g^*: (X, \mathcal{I}) \to (X, \mathcal{I})$ defined by the $g^*((x_0)) = (g_0(x_0))$ maps the product space homeomorphically onto itself. Also it is obvious from the construction of the function g^* that $g^*(U) \neq U$. But, as U is an of-set of the product space, we have $g^*(U) = U$, a contradiction. Hence it follows that U is a dense subset of the product space and consequently it follows from the Theorem 1 that (X, \mathcal{J}) is almost-tractable.

Let us consider the two point space $X = \{0, 1\}$ having its topology $\mathcal{F} = \{\emptyset, \{0, 1\}, \{1\}\}$. Indeed the space X is an almost-tractable space and consequently it follows from the above theorem that an Alexandroff cube of order n which is the product space of n copies of two point space X is an almost-tractable space. Further, a two point discrete space $D = \{0, 1\}$ is obviously a tractable space. A Cantor cube of order $m \ge \aleph_0$ is the product space of m copies of two point space D. As tractable spaces are productive [see [2]], a Cantor cube of order m is a tractable space. Further, as every tractable space is almost-tractable, a topological space which is the product space of an Alexandroff cube of order n and a Cantor cube of order m is an almost-tractable space.

Theorem 6. If (X, \mathcal{I}) be a schistic space with infinite dispersion character, then the space (X, \mathcal{I}) is an almost-tractable space.

Proof. It it assumed that the space (X, \mathcal{F}) is not an almostractable space, then there exists an of-set of the space U such that $ClU \neq X$. Consequently CU has nonvoid interior. Further, as the dispersion character of the space is infinite CU is an i-set of the space. Hence there exist an autohomeomorphism g of the space (X, \mathcal{F}) such that $g(CU) \subset CU$. It follows that $g(U) \neq U$ and consequently U is not an of-set of the space, a contradiction. Hence it follows that the space (X, \mathcal{F}) is an almost-tractable space.

In this connection it is to be remarked that if the dispersion of a schistic space is finite, then the space need not be an almost-tractable space. Thus if (X, \mathcal{F}) be an infinite topological space such that $\mathcal{F} = \mathcal{C}(x, \mathcal{U}(y))$, where $x \neq y$ and $\mathcal{C}(x, \mathcal{U}(y))$ is a principal ultraspace [see [4, 8]], then it can be easily shown that the space (X, \mathcal{F}) is a schistic space with finite dispersion character. However, the space (X, \mathcal{F}) is not an almost-tractable space. For, although $\{x, y\}$ is a proper nonvoid regularly closed subset of the space (X, \mathcal{F}) , $g\{x, y\} = \{x, y\}$ for every autohomeomorphism g of the space (X, \mathcal{F}) .

Definition. A decomposition of a topological space (X, \mathcal{J}) is said to be an almost upper semicontinuous decomposion if for every nonvoid regularly open set O, the union of all the members of the decomposition contained in O is open.

It is well known that the class of orbits of a topological space (X, \mathcal{J}) forms a decomposition of the space. Here the decomposition of a topological space consisting of the orbits of a topological space (X, \mathcal{J}) will be denoted by \mathfrak{D} .

In the following theorem we prove a necessary and sufficient condition for a regular almost-tractable space to be a tractable space.

Theorem 7. A regular almost-tractable space (X, \mathcal{I}) is tractable if and only if the decomposition \mathfrak{D} is almost upper semi-continuous.

Proof. To prove the "if" part of the theorem, let us assume that the decomposition \mathfrak{D} is almost upper semi-continuous. If it is assumed that the space (X, \mathcal{F}) is not a tractable space, then there exists an orbit P of the space (X, \mathcal{F}) which is nondense. Since the space is regular there exists a proper regularly open set O such that $ClP \subseteq O$. Let V be the union of all the members of the decomposition \mathfrak{D} which are contained in O. As, by hypothesis, the decomposition \mathfrak{D} is almost upper semi-continuous, V is a proper regularly open subset of (X, \mathcal{F}) . Further, as V is the union of a nonvoid collection of members of \mathfrak{D} , ClV is obviously the union of a nonvoid collection of members of the decomposition \mathfrak{D} . Also ClV is a proper subset of (X, \mathcal{F}) . Hence there exists an autohomeomorphism g of the space (X, \mathcal{F}) such that $g(ClV) \neq ClV$. But, as ClV is the union of a collection of orbits of the space, we have g(ClV) = ClV, a contradiction. Hence it follows that every orbit of the space is dense. Consequently every of-collection of the space is a cover of the space and it follows from the Theorem 1 of [2] that the space (X, \mathcal{F}) is tractable.

The "only if" part of the theorem can be easily established.

Corollary. A regular almost-tractable space (X, \mathcal{F}) is homogeneous if and only if the decomposition \mathfrak{D} is upper semi-continuous.

Proof. If the space (X, \mathcal{J}) is homogeneous, then the decomposition \mathfrak{D} is obviously upper semi-continuous.

To establish the converse result, let us consider that the decomposition 2 semi-continuous [see [6]]. Indeed upper semi-continuous everv decomposition is almost upper semi-continuous. Therefore, it follows from the above theorem that the space (X, \mathcal{J}) is tractable. Now, if the space (X, \mathcal{J}) is assumed to be non-homogeneous, then $\mathfrak D$ is non-degenerate. Let P be a member of \Im and x be a point in P. As the space (X, \mathcal{F}) is regular, it satisfies R_1 -axiom [see [3]]. Consequently, $Cl\{x\}$ is an e-set of the space [see [2]]. Since P is an orbit of the space $Cl\{x\}$ is clearly contained in P Now, $C(Cl\{x\})$ contains all the members of the decomposition \mathcal{D} excepting P. As \mathcal{D} is nondegenerate and upper semi-continuous, the union of the collection of the members of \mathfrak{D} contained in $C(Cl\{x\})$ is a nonvoid open set. It follows that P is a proper closed subset of (X, \mathcal{F}) . But, as the space (X, \mathcal{F}) is tractable P is dense, a contradiction. Hence it follows that \mathcal{D} is degenerate and the space (X, \mathcal{F}) is homogeneous.

Let $\mathcal{C}(p, \mathcal{U})$ be a nonprincipal ultraspace [see [4, 8]] on a set X. We call the point p of X to be the centre of the ultraspace $\mathcal{C}(p, \mathcal{U})$.

Theorem 8. If (X, \mathcal{F}) be a topological space such that the topology \mathcal{F} is the infimum of finite number of nonprincipal ultraspaces, then the space (X, \mathcal{F}) is an almost-tractable space.

Proof. Let $\mathcal{J}=\bigwedge_{i=1}^n\mathcal{C}(p_i,\mathcal{U}_i)$ and let A_p be the set of centres of the members of the collection of nonprincipal ultraspaces $\{\mathcal{C}(p_i,\mathcal{U})\}$. Let K be a nonvoid proper regularly closed subset of the space (X,\mathcal{J}) . Obviously K is a clopen subset of the space. Let a point $x\in K$ such that $x\notin A_p$ and a point $y\in CK$ such that $y\notin A_p$. Let g be a one-one correspondence of (X,\mathcal{J}) onto itself such that g(x)=y, g(y)=x and g(z)=z, for every $z\in X-\{x,y\}$. Let O be an open set. We write $O=O_\alpha\cup O_\beta$, where $O_\alpha=(X-\{x,y\})\cap O$ and $O_\beta=O-(X-\{x,y\})$. As $(X-\{x,y\})$ is a clopen subset of the space, O_α and O_β are obviously open sets of the space (X,\mathcal{J}) . Further, from the construction of the mapping g we have $g(O)=g(O_\alpha)\cup g(O_\beta)=O_\alpha\cup g(O_\beta)$. If $g(O_\beta)$ is nonvoid, then obviously it consists of isolated points of the space (X,\mathcal{J}) . It follows that g(O) and $g^{-1}(O)$ are open sets of the space (X,\mathcal{J}) . Hence it follows that g is an autohomeomorphism of the space (X,\mathcal{J}) . Also we have $g(K)\neq K$ and consequently the space (X,\mathcal{J}) is an almost-tractable space.

It has been shown by A. K. Steiner in [8] that every T_1 -topology is the infimum of all the nonprincipal ultraspaces finer than it. Now, from the above theorem it follows that a topological space having its topology as a nonprincipal ultraspace is an almost-tractable space. From the above facts it follows that every maximal [see [9]] almost-tractable T_1 -topology is a noprincipal ultraspace.

Further, it is to be mentioned that the space (X, \mathcal{F}) of the Theorem 8 can be easily shown to be a regular space. However, the decomposition of the space \mathfrak{D} is not upper semi-continuous. For, every singleton contained in $X-A_p$ is a clopen subset of (X, \mathcal{F}) and it can be easily shown that $X-A_p$ is a member of the decomposition \mathfrak{D} and consequently, if \mathfrak{D} is to be an almost upper semi-continuous decomposition, A_p should be an open set. However, it is not true and, therefore, \mathfrak{D} is not an almost upper semi-continuous decomposition.

Thanks are due to Prof. Dr. M. Datta, Center of Advanced Study in Applied Mathematics, Calcutta University, for his constant encouragement in the present investigation.

REFERENCES

- [1] Chakraborty, S. P., On schistic spaces, Rev. Roum. Math. Pures et Appl., Tome XVI, 1971, pp. 655-660.
- [2] Chakroborty S. P., On tractable spaces, Rev. Roum. Math. Pures et Appl., Tome XVII, 1972, pp. 837—844.
- [3] Davis, A. S., Indexed systems of neighbourhoods for general topological spaces, Amer. Math. Monthly. vol-68, 1961, pp. 886—893.
- [4] Fröhlich, O., Das Halbordnugssystem der topologischen Räume auf einer Menge, Math. Ann., vol-156, 1964, pp. 79—95.
- [5] Hocking, J. G. & Young, G. S., *Topology*, Addison-Wesley Publishing Company, Inc. Reading, 1961.
 - [6] Kelley, J. L., General topology, D. Van Nostrand Company, East-West editon, 1965.
 - [7] Oxtoby, J. C., Measure and category, Springer-Verlag, New York, 1971.
- [8] Steiner, A. K., The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc., vol-122, 1966, pp. 379—398.
 - [9] Vaidyanathaswamy, R., Set topology, Chelsea, New York, 1960.

Centre of Advanced Study in Applied Mathematics, Calcutta University, 92, A. P. C. Road, Calcutta-9, India