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There is a very small portion of the literature on stability of motion and the
equilibrium state of mechanical systems dedicated to the nonholonomic systems.
Together with the investigation of the state of equilibrium of nonholonomic systems
there appeared different points of views and different results were obtained by various
authors. Thus, for example, Whittaker considered that with the equations of
perturbed motion one should use the linearized equations of nonholonomic con-
straints which can be then integrated, what makes disappear the difference between
holonomic and nonholonomic systems. Bottema, however, proves that such an
approach to this problem is wrong (for more details about this problem see [5]).

In this study we consider the equilibrium state and the stationary motion
of nonholonomic systems, with closed holonomic sub-system (autonomous system
Chaplygin’s). We examine the stability by Liapunov using his direct method wherein
the equations of perturbed motion and nonholonomic constraints are not lineari-
zed, and in this way all the uncertainess about this problem are avoided. Besides,
following the works [1], [2], and [3], the Liapunov’s function is chosen in the form
of a sum of Kinetic energy of the system and of one positive-definite function which
depends only upon the position coordinates of the system and in this manner the
practical part of the work about the investigation of stability is greatly minimized.
Finally, the obtained expression, which helps us to judge about the stability of equi-
librium’s state and about stationary motion is rather simple and it does not request
employing of the differential equations of system motion.

1. We consider mechanical system whose configuration is determined by »n
Lagrange coordinates ¢, which is subject to k& nonholonomic constraints

w; ¢ =0 (I=1, ..., k; i=1, ..., n

(we use Einstein’s convention about summation by repeated indices). It is
supposed that:

a) The system is scleronomic and the kinetic energy can be written in the form
(1.1) T=T(, ..., q"% 4§, ..., ¢ (m=n-k).
b) Nonholonomic constraints can be rewritten in the form

(1.2) g"=bl(q\, ..., ¢Mq* (w=1, ..., m; h=m+1, ..., n).
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By substituting generalized velocities ¢* with the relations (1.2) we obtain transfor-
med expression for kinetic energy T" which, in respect of hypothesis a) and b), repre-
sents homogenous quadratic form by ¢* in which the coefficients depend only upon
the first m coordinates

(1.3) 2T=aw(q’, s ARG (, v=1, ..., m).
In the following text it is considered that all indices have always the same values.
Let the system be subject to the generalized forces

QizQi(q/: e qm; qla R ] q") (121, sy n).

For the investigation of motion of such a system we can use Chapligin’s equations
(special case Voronec’s equations):

doT oT [oT
1.4 —_— gy — bt =0
9 dt 0gn ogn (a;;h) A= 0um Ol
where
ob:  on"
h = Lo Ve ok
(1 5) Yp.v () qv a qu Yvu.

and the symbol above the bracket in the third member on the left side of equation
denotes that in the expression which is in the bracket where was performed the
substitution of all generalized velocities ¢* with the (1.2). The equations (1.4) repre-
sent the complet system of m equations with respect to the coordinates g* from
which we can obtain solutions g* = g* (¢). The other coordinates are obtained from
(1.2) after expressing their right sides in the function of ¢. From (1.4) it follows
that the equilibrium position is determined by equations

(1.6) 0.+ Q,bh=0

These m equations determine in » dimension space of V;, coordinates ¢, ¢%, ..., ¢"
equilibrium variety O, whose dimension is p>n—-m=k (symbol > is present
because all equations of the system need not be independent). Now, we investigate
the stability of equilibrium variety in the Liapunov sense by using the direct method
of Liapunov. Let us choose the point MC O, with coordinates g, g3, ..., q.
Without loss of generality of investigation we can choose the system of coordinates
so that g} = q5=- - - = g =0. In this manner the equations of perturbated equili-

brium state of the system will have the form (1.4) and the initial values of the per-
turbation must be in accordance with the equations (1.2). The Liapunov’s function
we use in the form of the sum of kinetic energy (which is strictly positive definite
function) and the function W which is strictly positive definite in the region H is

continuous together with its partial derivative o7 in the same region:

(1.7) V=T+W; W=W(, ..., ¢"cCOD(H)
The rate of time of this function is formed in the sense of equations of dis-
turbed equilibrium state (1.4):
~dv_dT adw (d oT ai*> u, OV,

—_— = 4_)_..__._ _gqll-—
dt dt dt \dt 0¢g~ og*

~

COTN L oW,
(Feefosons
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Taking into consideration the asymetric of coefficients v, we obtain at last:

. oW\ .
(1.8) V=(0ut 0,th+ 5 )
oqv
From this follows the following conclusion:

If there exists strictly positive definite function W& COD (H) so that for
nonholonomic Chaplygin’s system in the region H

oW\ .
(Qu+ th’;+—>qu<0
og-

the point M & O, is stable equilibrium position related to coordinates g*.
If at the same time V is strictly negative definite function, the position of
equilibrium is asymptotic stable.
From this, however, we can not come to any conclusion about coordinates
¢". This, our case concerns the stability with respect to the part of coordinates g*.
W1th the help of equations (1.2) we can come although to an interesting conclusion.
Let us suppose that the observed point M < O, is asymptotic stable equilibrium posi-
tion of the nonholonomic system. Then, it follows that
lim g+ () =0, lim g+ (¢)=0

t—>00 t—> o0
and from (1.2) we obtain

lim g% (¢) = 0; lim g” (t) = const. = g
t—> oo >

That means that the system may not oscillate round one fixed point in the V'
space. This point can displace over hypersurface which is represented by equlllbnum
various. In general case some equilibrium various O, will have the points in which
the equilibrium is stable, and the points in which the equilibrium is unstable. If we
mark the set of the first with O}, and the set of the others with O then we can speak

about the stable 0, O " and unstable 0 co, region of equilibrium various.
2. Let us consider some special cases.

A. Let us suppose that the nonholonomic system is subjected to generalized
forces only with the potential which is presented by the analytic function
IM=TI(qg, ..., ¢") Expending Il on a power series round the point

MO, ..., 0)C O, we obtain

2.1 H=co+ciq"+%cﬁq"qi+ﬂ* Gj=1, ..., n)
where
; 2
~TI(O, ..., O): c,.=<‘)—H,> : c,.,.=< ol )
0q‘/o 09'dq’/o

and IT* is the rest of our series. In respect to g = 0 then we obtain

(2.2) ¢,+c,bho=0 (bho=HL(0, ..., 0).
From (2.2) it is clear, that in the equilibrium position of nonholonomic system

the generalised forces Q,= —Z—H differing from holonomic systems may not be
g
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equal to zero. From this follows that the series (2.1) will have also linear terms,
which is not the case with the holonomic system. Besides we can always choose
¢, = 0. If the potential energy Il possesses the strict minimum at the point ¢’=0
in respect to coordinates g*, then considering that W =II from (1.9) it follows that
this position of the equilibrium is stable. Therefore, as a generalization of Lagrange’s
theorem for holonomic conservative systems we can obtain for the nonholonomic
system the following conclusion.

Equilibrium position of nonholonomic systems of Chapligin’s type wherein
the potential energy has the strict minimum related to the part of variables g* is
the position of the stable equilibrium.

B. Let the observed system, besides potential forces Q¢ be also subjected
to the forces, which are linear function of the generalised velocities:

0P = ~ £,/

By separating the matrix coefficients f;; in the symmetric and screwsymmetric
part and by introducing Rayleigh’s function we can obtain

oIl . . .
Q=0+ 0P =— o —Jfun @ —Jind’ = — od og YO ¢ (yujn = — Yuan)-

Introducing this expression for generalized forces into (1.9) we obtain
0 W)qu:<_ﬂ_ﬂbﬁ>qu_2®,
og- og*

From this expression results the direct conclusion which is exposed in [8]:
Dissipative and gyroscope forces do not disturb the stability of equilibrium position
of nonholonomic system. Dissipative forces can fix the stable equilibrium position
to asymptotic stability.

[ h
0.+ 0,b,+

oq¥

3. Within the system, which is considered under the 1. and 2. it is obvious
that the coordinates g” are cyclical and the coordinates g* noncyclical. Such systems,
in some cases and for definite values gy, g5 =0, g} can perform stationary motion,

i. e., motion in which all position coordinates and the cyclical velocites are constant
during the entire time of motion and the cyclical coordinates are linear functions
of time:

3.1 g“=const. =g%; ¢"=const.= qgl; q"=qht+qh.

The constants gi can be determined by with the chosen values ¢} from the equation
of motion (1.4), taking that ¢*=0

(3.2) O, (a3, 44) + O, (a3, %) b (95) =0 (r=m+1, ..., n)

System (3.2) determines in the space ¥, of coordinates ¢’ various O, of the statio-
nary motions by the given values ¢%, dimensions s> n— m by hypothesis that the

solution of equations (3.2) is
ge=1e (g, .., @)

uniformy defined, meaning that there is no points of bifurcation.

Let us consider the stability by Liapunov of a certain stationary motion which
belongs to O,. Whithout reducing the generality it can be considered that for the
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chosen fixed values g all position coordinates are g¢=0. It can be considered

that to the stationary motion in the space ¥, corresponds equilibrium position
in the various O,. Let us report very little initial disturbances to the observed system.
We mention that they can not be arbitrary but they have to be in accordance with
the equations of nonholonomic constraints (1.2). For disturbed motion it is

(3.3) g =8, qr=nt, @'=qi+E ¢'=qiiyt
where &7 and v’ are disturbances.

As the cyclic coordinates in the linear way depend on time, the system in
respect to them is certainly unstable. Therefore we omit them in further investi-
gation. Introducing (3.3) into (3.2) we obtain

[Qv(g¥, 45+ + O, (g% ¢"+4") bl g¥)] #0.
qu=

That is to say the equations (3.2) need not be exact even after the substitution with
assistance of (3.3). Therefore the stationary motion will be subject to costant distur-
bances. We will not consider this case here, and to avoid it, we shall put tha. all
n" are equal to zero. In this way we will investigate the stability in respect to the
position of coordinates and their generalized velocities

quzgu, qu:-nu
that represents the conditional stability by Liapunov.
The expression for kinetic energy of disturbed motion is

(34) 2T*=au.v (E19 ceey gm) W“VJV-
The equation of nonholonomic constraints in variations is
(3.5) Ge=b(E, ..., EM)m

and the Chapligin’s equations in variations are

(3.6) Yy —Qp — Qb =0

d oT* oT* (cﬁ**)
dt on+ ok+ 0q"
where # denotes that the corresponding terms are given by the help of disturbances
Ee and 7w

The stability of observed stationary motion we investigate with the help of

direct method by Liapunov. As T* is obviously positive definite quadratic form
in respect to n*, we can choose the function of Liapunov in the form

(3.7) V=T W*
where
W*=W*(E, ..., ECCOD(H), W*>0, W*=0 & fl=...=Em_0,

Analogously to the calculus carried out in 1. we obtain

’ * * oW
(3:8) V=(Qu+ 0; bt + a_{%

From the previous expression here results the following conclusion:



14 Aleksandar Baksa

If for the stationary motion g% =const., ¢”=const. of nonholonomic system
exists positive definite function W& COD (H) for which it is

oW
* * h
(Qu+ thu+a_&t>71u<o
that motion is stable. Besides, if (3.8) is strictly negative definite function, then
the motion is asymptoticly stable.

To show that the dissipative forces do not disturb the stability of stable
stationary motion it is easy to prove it in the way analogous to that in the item 1.
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