О СВОЙСТВАХ ГРАНИЦ ОБРАЗА И ПРООБРАЗА ТОЧЕК ПРИ МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЯХ

Миодраг Мишич

(Сообщено 21. Апреля 1972)

Введение. В настоящей работе рассматриваются некоторые свойства границ образов и прообразов точек, при многозначных отображениях топологических пространств. Те же свейства, для границ прообразов точек при однозначных отображениях рассматривал Е. Michael в [1]. Он доказал, что при однозначных непрерывных и замкнутых отображениях $f: X \to Y$ топологического T_1 —нормального или паракомпактного пространства X на q—пространство Y, граница $\partial (f^{-1}(y))$ прообраза $f^{-1}(y)$, для каждой точки $y \in Y$, счетно компактное, соответственно бикомпактное подпространство.

Замисел этой работы показать, что похожие свойства имеют тоже и границы образов или просбразов точек, при некоторых многозначных отображениях тех же топологических пространств.

Здесь будут рассматриваться лишь такие многозначные отображения $\Gamma: X \to Y$, при которых точки отображаются в замкнутые множества и $\Gamma x \neq Y$, для всех $x \in X$. Определения, касающеся многозначных отображений, можно посмотреть в [2] (определение 2.3), а про другие свойства многозначних отображений смотреть в [2] и [3]

Упоминаем ещё определение q-пространства¹. Топологическое пространство Y називается q-пространство, если для каждой точки $y \in Y$ существует последовательность таких её окрестностей H_k , $k=1, 2, 3, \ldots$, что, если $y_k \in H_k$ и все точки $y_1, y_2, y_3, \ldots, y_k, \ldots$, различны, то эта последовательность точек имеет предельную точку $y \in Y$. Напомним, что согласно [3], будем употреблять следующе обозначения:

$$\Gamma^{\#} A = \{ y \mid \Gamma' y \subset A \}$$
 для $A \subset X$ и
$$\Gamma^b B = \{ x \mid \Gamma x \subset B \}$$
 для $B \subset Y$.

Если не оговоримся для всех пространств рассматрываемых в этой статье будем предполагать, что T_1 -пространства.

¹ (Cm. [1],)

Основные результаты

Основными результатами настоящей работы являются следующие теоремы.

Теорема 1. Пусть $\Gamma: X \to Y$ многозначное полунепрерывное сверху и открытое отображение топологического пространства X удовлетворяющего первой аксиоме счетности на топологическое пространство y. Тогда каждая действительная однозначная и непрерывная функция $f: Y \to R^1$ ограниченна на границе $\partial(\Gamma x)$ образа Γx каждой точки $x \in X$.

Теорема 1.1. Пусть $\Gamma: X \to Y$ многозначное полунепрерывное сверху и открытое отображение топологического пространства X удовлетворяющего первой аксиоме счетности на топологическое нормальное или паракомпактное пространство Y. Тогда, граница $\partial(\Gamma x)$ образа Γx для каждой точки $x \in X$, компактное, соответственно бикомпактное множество

Результаты из предыдущих теорем мсжно получить тоже, если допустим, что пространство X не только пространство с первой аксиомой счетности, но и q-пространство. Для того достаточно предположить, что отображение Γ не только открыто но, и замкнуто.

Принимая во внимание, что многозначное отсбражение Γ непрерывно, если ему обратное отображение Γ открыто и замкнуто, эти результаты могут быть высказаны следующим способом.

Теорема 2. Пусть $\Gamma: X \to Y$ многозначное непрерывное и замкнутое отображение пространства X на регулярное q-пространство Y. Тогда, каждая действительная однозначная и непрерывная функция $f: X \to R^1$ ограниченна на границе $\partial (\Gamma' y)$ прообраза $\Gamma' y$ каждой точки $y \in Y$.

Теорема 2.2 Пусть $\Gamma: X \to Y$ многозначное непрерывное и замкнутое отображение нормального или паракомпактного пространства X на регулярное q-пространство Y. Тогда, граница $\partial(\Gamma'y)$ прообраза $\Gamma'y$, для каждой точки $y \in Y$, компактное, соответственно бикопактное множество.

Переходим теперь к доказательству, сформулированных выше теорем.

Доказательство теорем 1. и 1.1 Так как, для каждой точки $x \in X$ множество Γx замкнуто, то $\partial (\Gamma x) \subset \Gamma x$. Если $\mathcal{O}(x) = \{O_k | k \in N\}$ какая-то локально счетная база точки x, тогда из $x \in O_k$, $k = 1, 2, \ldots$, имеем

$$\partial (\Gamma x) \subset \Gamma x \subset \Gamma O_k = H_k$$
.

Так как отображение Γ открыто, множества $H_k = \Gamma O_k$, $k = 1, 2, 3, \ldots$, открыты и потому окрестности границы $\partial(\Gamma x)$. Доказательство теоремы выведем, предполагая противное, т.е., что существует действителная однозначная и непрерывная функция $f: Y \to R^1$, неограниченная на множестве $\partial(\Gamma x)$. Тогда можно отыскать такую счетную последовательность точек

$$\{y_k|y_k{\in}\partial(\Gamma x),\ k{\in}N\}$$
, что $|f(y_{k+1})|{>}|f(y_k)|+1.$

При помощи этой последовательности определим дискретное в Y семейство $\mathcal{O} = \{V_k | k \in N\}$ открытых, между собей непересекающихся множеств:

$$V_k = \left\{ y \left| y \in \mathcal{Y}, \left| f(y) - f(y_k) \right| < \frac{1}{2} \right\}, \quad k = 1, 2, 3, \dots$$

Поскольку множество $H_k \cap V_k = \Gamma O_k \cap V_k$ открыто и

$$y_k \in \delta(\Gamma x) \cap [H_k \cap V_k]$$
. то

$$[H_k \cap V_k] \setminus \Gamma x \neq \emptyset$$
,

для $k = 1, 2, 3, \ldots$

Поэтому для каждого $k = 1, 2, 3, \ldots$, существует точка

$$y_k' \in [H_k \cap V_k] \setminus \Gamma x$$
.

Таким образом, мы получили множество

$$B = \{y_{\nu}' | k \in \mathbb{N}\} \subset Y$$

которое дискретно¹⁾ в Y, так как каждая точка $y_k' \in B$ принадлежит только одному множеству $V_k \in \mathcal{O}$, а семейство \mathcal{O} дискретно в Y. Поэтому множество B замкнуто в Y. Но тогда и множество $\Gamma'B \subset X$ замкнуто в X, так как отображение Γ полунепрерывно сверху. Так как $y_k \in \Gamma x$ для $k=1,2,3,\ldots$, то $B \cap \Gamma x = \emptyset$ и имеем, что

$$\Gamma'B\cap\Gamma^b\Gamma x=\emptyset$$

и поскольку $x \in \Gamma^b \Gamma x$, то $x \in \Gamma' B$. Так мы получили, что

$$x \in X \setminus \Gamma' B = 0$$

и так как множество $\Gamma' B$ замакнуто, множество O открыто и одна окрестность точки x. Тогда при некотором $k=k_0$, имсем, что

$$x \in O_{k_0} \subset O = X \setminus \Gamma' B$$
.

Отсюда слеует, что $O_{k_0} \cap \Gamma' B = \emptyset$ и далее $\Gamma O_{k_0} \cap \Gamma^\# \Gamma' B = \emptyset$, а как всегда $B \subset \Gamma^\# \Gamma' B$, то $\Gamma O_{k_0} \cap B = \emptyset$, или

$$H_{k_0} \cap B = \emptyset$$
.

C другой стороны, как $y_{k_0}{'}{\in}H_{k_0}{\cap}V_{k_0}$ и $y_{k_0}{\in}B$, то

$$H_{k_0} \cap B \neq \emptyset$$

Итак, мы получили противоречие и тем самым доказали теорему 1.

Пользуясь, теперь, теоремой 1 можно сразу доказать теорему 1.1. Пусть $f_0: \partial(\Gamma x) \to R^1$ какая-то действительная однозначная и непрерывная функция определенна на замкнутом мнсжестве $\partial(\Gamma x)$. Так как пространство Y по предположению, нормально, то функцию f_0 можно, по теореме Титце, непрерывно продолжить на все пространство Y. По теореме 1 эта функция ограниченна на $\partial(\Gamma x)$, т.е. функция f_0 ограниченна на $\partial(\Gamma x)$.

Так каждая непрерывная и действительная функция определенна на $\partial(\Gamma x)$ ограниченна, т.е. подпространство $\partial(\Gamma x)$ псевдокомпактно. Но подпространство $\partial(\Gamma x)$ и компактно, так как пространство Y нормально и $\partial(\Gamma x)$ замкнуто в Y.

Если пространство Y паракомпактно (и T_2) то оно нормально и поэтому $\partial(\Gamma x)$ компактно. Так как каждое компактное и паракомпактное пространство бикомпактное, то и $\partial(\Gamma x)$ бикомпактно.

Из только что доказаной теоремы, мы легко получаем следующие следствия.

 $^{^{1)}}$ т.е. для каждой точки $y{\in}Y$ существует окрестность, пересекающая лишь одно множество из ${\mathcal O}$.

Следствие 1.1.1. Пусть $\Gamma: X \to Y$ многозначное непрерывное и замкнутое отображение нормального или паракомпактного пространства X на пространств Y удовлетворяющее первой аксиоме счетности.

Тогда для каждой точки $y \in Y$ граница $\partial (\Gamma' y)$ компактна, соответственно бикомпактна.

Это следствие непосредственно вытекает теоремы 1.1, если поменяются X и Y, а также Γ и Γ' и если допустим, что отображение Γ непрерывно (\equiv полунепрерывно сверху и снизу). Тогда множество Γ' у будет замкнуто в X и $\partial(\Gamma'y) \subset \Gamma'y$. Для каждой открытой окрестности V любой точки $y \in Y$ имеем

$$\partial (\Gamma' y) \subset \Gamma' y \subset \Gamma V = H$$

и H открытая окрестность мнежества $\partial(\Gamma'y)$, так как отображение Γ полунепрерывно снизу.

Прежде чем сформулируем новое следствие теореми 1.1, нужно установить одно определение.

Пусть $\Gamma: X \to Y$ многозначное отображение. Его будем называть S_x -отображением, если для каждой точки $y \in Y$ множество Γ' у сепарабельное подпространство пространства X.

Следствие 1.1.2. Пусть $\Gamma: X \to Y$ в обе стороны непрерывное, почты-однозначное и S_x -отображение нормального или паракомпактного пространства X удовлетворяющего первой аксиоме счетности на регулярное пространство Y. Тогда Y является пространством удовлетворяющим первой аксиоме счетности и граница $\partial(\Gamma'y)$ пообраза $\Gamma'y$ для каждой точки $y \in Y$ компактна, соответственно бикомпактна.

Для доказательства следствия 1.1.2. достаточно доказать только первое утверждение этого следствия, т.е., что пространство Y удовлетворяет первой аксиоме счетности.

В самом деле, пусть $y \in Y$. Так как отображение Γ S_x -отображение, существует счетное всюду плотное в Γ' y подмножество

$$A_y = \{x_k | k \in N\} \subset \Gamma' y.$$

Для каждой точки $x_k \subset A$ можно найти счетную локальную базу $\mathcal{O}(x_k) = \{O_k^{\ i} | i \in N\}$, так как пространство X удозлетворяет первой аксиоме счетности. Тогда семейство $\mathcal{O}(y) = \bigcup \{\mathcal{O}(x_k) | x_k \in A_y\}$ представляет собой счетное семейство открытых множеств пространства X. Поэтому открытыми будут тоже и множества $FO_k^{\ i} \subset Y$, как образи открытых множеств $O_k^{\ i} \subset \mathcal{O}(x_k) \subset \mathcal{O}(y)$ при открытом отображении Γ . Следовательно, семейство

$$\mathcal{H}(y) = \{H_k^i | H_k^i = \Gamma O_k^i, O_k^i \in \mathcal{O}(y)\}$$

можно принят для счетной, локальной, базы точки $y \in Y$. Действительно, так как отображение Γ замкнуто, полунепрерывно снизу и почти-однозначно, а пространство Y регулярно, для каждой открытой окрестности H точки y имеем

$$\Gamma^b H \cap \Gamma' y \neq \emptyset^{(1)}$$

¹⁾ Cm. [3], ct. 527.

Множество $\Gamma^b H = 0$ открыто в X, так как отображение Γ полунепрерывно сверху. Поэтому существует точка $x_{k_0} \in A_v$, что

$$x_{k_0} \in O \cap \Gamma' y = \Gamma^b H \cap \Gamma' y$$
,

так как множество A_y всюду плотно в $\Gamma'y$. Тогда ещё можно найти такое множество $O_{k_0}^i \in \mathcal{O}(x_{k_0})$, что

$$x_k \in O_k^i \subset O = \Gamma^b H.$$

Из этого сразу получаем, что

$$y \in \Gamma X_{k_0} \subset \Gamma O_{k_0}^i = H_{k_0}^i \subset \Gamma \Gamma^b H \subset H,$$
 т.е. $y \in H_{k_0}^i \subset H$

и доказано, что пространство У удовлетворяет первой аксиоме счетности.

Доказательство теоремы 2. Проводим, как и доказательство теоремы 1 с помощью рассуждений от противного. Пусть $y \in Y$ любая точка. Предположим, что существует однозначная действительная и непрерывная функция $g: X \to R^1$ неограниченная на множестве $\partial (\Gamma' y)$. Тогда можно найти такую счетную последовательность точек

$$\{x_k|x_k{\in}\partial(\Gamma'y),\ k{\in}N\}$$
, что $|g(x_{k+1})|{>}|g(x_k)|+1.$

С помощью этой последовательности получаем семейство

$$\mathcal{O} = \{ O_k | k \in \mathbb{N} \}$$

между собой непересекающихся открытых и дискретных в X множеств

$$O_k = \left\{ x \mid x \in X, \ |g(x) - g(x_k)| < \frac{1}{2} \right\}$$

для $k = 1, 2, 3, \ldots$

В силу предположения, что пространство Y q-пространство, существует последовательность

$$\mathcal{H}(y) = \{H_k | y \in H_k, k \in N\}$$

открытых окрестностей точки y, что каждая последовательность между собой различных точек

$$\{y_k|y_k\in H_k,\ k\in N\}$$

имеет предельную точку $\overline{y} \in Y$.

Положим, теперь, $H_1 = W_1$ и так как H_1 окрестность точки y и отображение Γ полунепрерывно снизу, то множество $\Gamma' W_1$ открыто и является окрестностью множества $\Gamma' y$. Это множество замкнуто, так как Y T_1 -пространство и отображение Γ полунепрерывно сверху. Таким образом,

$$\partial (\Gamma' y) \subset \Gamma' y \subset \Gamma' W_1.$$

Тогда множество $\Gamma'W_1\cap O_1$ открыто и представляет собой окрестность точки $x_1\in\partial\left(\Gamma'y\right)$ и поэтому

$$(\Gamma' W_1 \cap O_1) \setminus \Gamma' y \neq \emptyset.$$

Пусть, теперь, $x_1' \in (\Gamma' W_1 \cap O_1) \setminus \Gamma' y$.

Тогда следует, что $y \oplus \Gamma x_1'$ и так как пространство Y регулярно, можно установить открытую окрестность V_1 множества $\Gamma x_1'$, что $y \oplus Y \setminus \overline{V}_1 = G_1$. Так как $x_1' \oplus \Gamma' W_1$, то $\Gamma x_1' \cap W_1 \neq \emptyset$, т.е. $\Gamma x_1' \cap H_1 \neq \emptyset$ и можно избрать точку $y_1 \oplus \Gamma x_1' \cap H_1$. Очевидно, что $y_1 \oplus V_1$. Далее, положим $W_2 = H_2 \cap G_1$. Тогда $y \oplus W_2$ и

$$(\Gamma'W_2\cap O_2)\setminus \Gamma'y\neq\emptyset,$$

и поэтому можно выбрать точку $x_2' \in (\Gamma' W_2 \cap O_2) \setminus \Gamma'$ у и найти открытую окрестность V_2 множества $\Gamma x_2'$, что $y \in Y \setminus V_2 = G_2$. Поэтому, так как $\Gamma x_2' \cap W_2 \neq \emptyset$, мэжно выбрать точку $y_2 \in \Gamma x_2' \cap W_2$.

Этот поступок продолжаем далее таким же способом и когда уже определены точки x_1', x_2', \ldots, x_n' и точки y_1, y_2, \ldots, y_n и определены множества $V_1, V_2, V_3, \ldots, V_n$, $(Tx_k' \subset V_k, k=1, 2, 3, \ldots, n)$, а также и множества $G_1, G_2, G_3, \ldots, G_n$, которые являются окрестностями точки y, положим

$$W_{n+1} = H_{n+1} \cap \{ \cap \{G_k | k=1, 2, \ldots, n \} \}$$

и выберем точку

$$x'_{n+1} \in (\Gamma' W_{n+1} \cap O_{n+1}) \setminus \Gamma' y$$
.

Потом определим открытую окрестность V_{n+1} множества $\Gamma x'_{n+1}$, что

$$y \in Y \setminus \overline{V}_{n+1} = G_{n+1}$$

и, так как $x_{n+1}' \in \Gamma' W_{n+1}$, т.е. $\Gamma x_{n+1}' \cap W_{n+1} \neq \emptyset$, найдем точку $y_{n+1} \in \Gamma x_{n+1}' \cap \Gamma W_{n+1}$ и так далее.

- Таким образом полученна последовательность

$$\{y_k | y_k \in H_k, k = 1, 1, 3, \ldots\}$$

между собой различных точек.

Покажем, теперь, что эта последовательность не имеет предельных точек. Если бы существовала предельная точка $\overline{y} \in Y$, то $\overline{y} \in \overline{B}$, где \overline{B} замыканые множества $B = \{y_1, y_2, \dots, y_k, \dots\}$ и так как $y_k \in \Gamma x_k$, то

$$\overline{y} \in \overline{B} \subset \overline{\bigcup \Gamma x_k} = \overline{\Gamma A}$$

где
$$A = \{x_1', x_2', \dots, x_n', \dots\}.$$

Но множество A замкнуто, так как $x_k \in O_k \in O$ и семейство O представляет собой дискретное семейство между собой непересекающихся открытых множеств. В силу предположения, что отображение Γ замкнуто, то замкнуто и множество ΓA и следовательно

$$\overline{y} \in \overline{\Gamma A} = \Gamma A = \bigcup \{ \Gamma x_k' | k \in \mathbb{N} \}.$$

Поэтому существует индекс $k_{\rm o}$, такой, что

$$\overline{y} \in \Gamma x_{k_0}$$
.

Но тогда открытое множество V_{k_0} содержит множество Γx_{k_0} , точку y и лишь конечное множество точек из B. Следует, что множество B не имеет предельных точек.

С другой стороны, так как $y_k \in H_k$ для каждого $k \in N$, и все точки $y_k \in B$ различны, а пространство Y q-пространство, то множество B имеет предельную точку.

Полученное противоречие доказивает теорему 2.

Доказательство теоремы 2.1. сразу происходит из теоремы 2. таким же образом как и теорема 1.1. из теоремы 1.

Из теоремы 2.1 легко получаем следующие следствия.

Спедствие 2.1.1. Пусть $\Gamma: X \to Y$ многозначно, непрерывно и замкнуто отображение пространства X на Хауздорфовое пространство Y. Если отображение Γ Y-бикомпактное или только граница $\delta(\Gamma x)$ образа Γx для каждой точки $x \in X$, бикомпактна и пространство X нормально или паракомпактно, то граница $\delta(\Gamma' y)$ компактна, соответственно бикомпактна.

Доказательство этого следствия отличается от доказательства теоремы 2. только в части где определяются окресности множества $\Gamma x_k'$. Так как $y \in \Gamma x_k'$ и $\partial (\Gamma x_k') \subset \Gamma x_k'$ и множество $\partial (\Gamma x_k')$ бикомпактно, то существуюут открытые непересекающиеся окрестности: O_y точки y и O множества $\partial (\Gamma x_k')$. Окрестность O_y можно определит так, что $O_y \cap \text{Int}(\Gamma x_k') = \emptyset$. Если положим $V_k = O \cup \partial (\Gamma x_k')$, то $O_y \cap V_k = \emptyset$ и $y \in \overline{V}_k$. Тогда опять $y \in Y \setminus \overline{V}_k = G_k$, для $k = 1, 2, 3, \ldots$

Следствие 2.1.2. Пусть $\Gamma: X \to Y$ многозначное, в обе стороны непрерывное отображение паракомпактного q-пространства X на такое же пространство Y. Тогда граница $\partial(\Gamma'y)$ бикомпактна для каждой точки $y \in Y$. тогда и только тогда, когда граница $\partial(\Gamma x)$ бикомпактна для каждой точки $x \in X$.

Доказательство этого следствия происходит непосредственно из доказательства предыдущего следствия, если вспомним, что отображение Γ в обе стороны непрерывно, если непрерывно и открыто-замкнуто и, что и отображение Γ' такое же.

Замечание. Как мне любезно сообщил М. Марьянович, теорему 1. и теорему 1.1. получить и несколько иначе, доказивая предварительно следующие более общие два утверждения.

- а) Пусть B замкнутое подмножество счетного характера¹⁾ в топологическому пространству Y. Тогда каждая действительная непрерывная и однозначная функция $f: Y \to R^1$ ограничена на границе $\partial(B)$ множества B. Если пространство Y нормально или паракомпактно, то граница $\partial(B)$ множества B (счетно) компактна, соответственно бикомпактна.
- б) Пусть $\Gamma: X \to Y$ многозначное полунепрерывно сверха и открытое отображение топологического пространства X удовлетворящего первой аксиоме счетности на пространство Y. Тогда образ Γx каждой точки $x \in X$ при отображению Γ множество счетного характера в Y.

Первое утверждение доказивается как и в теореме 1., а второе следующим образом.

Пусть $x \in X$ какая-то точка и V окрестность множества Γx . Так как отображение Γ полунепрерывно сверху, а пространство X удовлетворяет первой аксиоме счетности, то существует открытая окрестность U_k в счетной базе \mathcal{U} точки x, что $\Gamma x \subset \Gamma U_k \subset V$. Тогда для счетной базе открытих окрестностей множества Γx в Y можно взять семейство $\mathscr{V} = \{V_n | = \Gamma U_n, U_k \in \mathcal{U}\}$, так как отображание Γ открыто и все множества $V_n = \Gamma U_k$ тогда открыты.

¹⁾ Замкнутое множество $B \subset Y$ счетного характера в топологическом пространстве Y, если существует счетное семейство $\mathcal{O} = \{V_n \mid n \in N\}$ открытых окрестностей множества B в Y, что для каждого открытого множества V содержащего B, существует $V_k \in \mathcal{O}$, что $B \subset V_k \subset V$.

ЛИТЕРАТУРА

- [1] E. Michael, A note on closed maps and compact sets; Israel J. Math. 1964, sec. F, No 3, 173-176.
- [2] J. R. Borges, A study of multivalued functions, Pacific J. Math. vol. 23, No.3, 1967, 451—451.
- [3] В. И. Пономарев, О свойствах топологических пространств..., Мат. сб. 1959, т. 51 (93). № 4, 515—536.
- [4] В. И. Пономарев, Новое пространство замкнутых множеств..., Мат. сб. 1959, т. 48 (90), № 2, 191—212.
- [5] R. Arnes, J. Dugandiji, Remark on the concept of compactness, Portugs. Math. 9. 1950, 141-143.