PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 13 (27), pp. 5—9

THE NUMBER OF ANTICHAINS OF FINITE POWER SETS
Dragos§ M. Cvetkovié
(Communicated April 7, 1972)

Let X={x,,...x,} be a finite set. The power set P(X) of the set X is,
as it is known, ordered by the inclusion. X, and X, (X, X, < P(X)) are
incomparable if neither X; C X, nor X,C X,. The set A={X,, ..., X, } containing k
mutually different elements of the set P(X) is called antichain of length k of
(P (X), C) if every two sets X;, X, (i#]) from A are incomparable.

Let A(n, k) be the number of antichains of length k of the set P(X),
where | X|=n. Trivially we have 4 (n, 1)=27. The formulas for A4(n, 2) and
A(n, 3) are given in [1].

In this paper we shall present a procedure by which the explicite formula
for A(n, k) can be obtained for every given k (naturally depending on n).
For some values of & the mentioned formula for A(n, k) is deduced by use
of a computer. The above is the contents of the first part of the paper. In
the second part we represent another way for obtaining the results of [1].

In the paper the language and methods of the graph theory are used,
because in this way the essence of the problem can be more easily seen.

1. Antichains and walks in a graph
The mapping f: P(X)—>{B;,.--,B) B E {0, 1}, i=1,...,n} defined by

VYePX)(Y=@---»8,)
& ME{L...m)(xCY = B=1AxG Y = =0))

is a bijection. If a walk of length k in a graph without multiple edges is
identified with s-tuple of vertices through which it passes, each of the above
n-tuples determines one walk of length »—1 in the graph of Fig. 1.

The number of such walks is obviously
equal to 27 and this is the number of all n-tuples OQO
®,>.--,B,) or the number of elements of P(X) or, 1 2
finally, the number A4 (n, 1) of antichains of length Fig, 1
1 of P(X).

We shall connect, for arbitrary k, the number A(n, k) with the number
of walks of length n—1 having certain properties in a suitably chosen graph.

An antichain of length k of P (X) can be determined by the matrix 4= |l ||,
(a; € {0, 1}). Every row of the matrix ./ (interpreted as an n-tuple) determines,
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in the above mentioned sense, one element of the antichain A={X,,..., X;}.
To every antichain of length k corresponds k! such matrices, while, naturally,
there are matrices not determining an antichain.

The matrix .4 can be interpreted as the n-tuple of its columns. There-
fore, the number of all matrices /4 is equal to the number of walks of length
n—1 in the graph containing all possible edges and loops and whose vertices
are all possible columns of matrices 4.

The columns are, in fact, k-tuples of symbols O and 1. Since the number
of all possible columns is equal to 2%, the corresponding graph has 2% vertices.
For k=2 it is represented on Fig. 2. In this case the number of walks of
length n—1, i.e., the number of matrices 4 is
equal to 47 In the further text we shall encounter
always with the graphs containing all possible
edges and loops. If such a graph has [ vertices,
then it has, obviously, /* walks of length n—1.

For k=2 we shall determine the number of
antichains by means of a method which will be
then applied to the general case. In the graph on
Fig 2 we shall determine the number of walks
defining the matrices .4 corresponding to antichains
of P(X). It can be edsily seen that the matrix 4
Fig. 2 (of the type 2xn) determines the antichain of

length 2 if and only if it contains at least one

0‘ . Therefore, the

Sw

column of the form and at least one of the form

] 1

walk in the graph on Fig. 2 determines an antichain if and only if it
passes at least once through the vertex (1)}
0
1l

Let N, denote the number of all walks of length »—1 in the graph.
If § is a subset of the set of vertices of a graph, N, denotes the number
of walks (of length n—1) passing at least once through at least one vertex
from S. For such walks we say that they pass through the set S or that
they have the property s. In general, if a subset of the set of vertices is
denoted by a capital letter, the corresponding property will be denoted by a
small letter. s denotes the property opposed to s, i. €., Ny denotes the number
of walks not having the property s. Hence, N,=N,+ N;. If 5, and s, are two

properties of the walks, N, , denotes the number of walks that have the
property s, and the property s, also.

If in the graph on Fig. 2 we take S12={”(1)“} and SZI:{H?H} we get

and at least once through the

vertex

204 (ﬂ, 2) = NS12521 .

On the basis of the combinatorial inclusion-exclusion principle we can write

N,

$12521

~N,—N;,

S12 7 N-“_zl

+N5_12~‘—21'

‘ It can be easily seen that Nj, is equal to the number of all walks in
the graph obtained by deleting vertices of the set S, from the initial graph.
In the same way it holds for Nj; , while N;,;,. is equal to the number of

S212 12521
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all walks in the graph obtained by deleting the vertices of the set §,,US,,
from the initial graph. By deleting vertices from the complete graph we again
get a complete graph and the determining the number of walks is simple, as
it has been already mentioned. Since N,=4" N;,=N; =3" and N;,;, =2,
we get

A(n, 2)=»§~4n—3n+%2n.

The above quoted idea can be simply applied also in the case of the
antichains of the arbitrary length k. We consider at first the complete graph
with 2k vertices representing the ordered k-tuples of elements 0 and 1, i.e.,
all possible columns of matrices 4. For every ordered pair of indices i, j
(i), 4, j=1,...,k) we define the set S as the set of all k-tuples (columns)
whose element on the i-th place is equal to 1 and whose element on the j-th
place is equal to 0. The passing of a walk through the sets S, and S;, ensures
that the elements of the set P(X) determined by i-th and j-th row of the cor-
responding matrix .4 are incomparable. It can be easily seen that

k! A(Tl, k)=Ns12s13...Sij...Sk1’

where the index pair ij passes through all the 2-permutations (without
repetitions) of the set {I,..., k}.

The principle of inclusion and exclusion yields now the following

Theorem. We have

1
(H A(n, k)zpk_;(N:“ZN;t}f'{'ZNEfjs‘lm“ R G l)kN‘f;Z"";kl)’

’
over all combinations of the second class of properties s, etc.

where: % Nj;, denotes the sum over all properties .E;j, Z Nsys,, denotes the sum

On the basis of (1) a computer programme for determining the explicite
formula for A4(n, k) (for the given k) was made. The programme generates
the sets S; and all their combinations. For each combination the union of
sets forming the combination is determined. If the combination is of the
m-th class and the mentioned union contains / elements, the contribution of
the considered combination to the number k! 4 (n, k) is equal to (—1)m (2% — [)n.
The programme has been realized by N. Klem.

The programme provides the result for k=3 instantaneously. The result
of M. Popadi¢ was obtained and this was, among other things, a test for
the correctness of the programme. For k=4 an IBM 1130 computer provided
the result for about 10 minutes. For greater values of &k the time for computer
solution would be much longer if the algorithm were not improved.

We list now the known formulas for A(n, k) as well as the formula
obtained for k—=4:

A, 1)=27

A(n, 2):%.4n~3n+é-2n,
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A 3= L e o5y Lan_zn Lo
6 2 3

Ao =L g Lo Lo g Lo 3
24 2 6 4 4 2

+15"+E4n—1—13"+i2".
2 24 12 4

2. Another way for determining the number of antichains

It is of interest to note that M. Popadié’s result can be deduced by
means of graph theory in another way, too.

For indirected graphs without loops or multiple edges the following

formula (which was otherwise in a similar form noticed in [2]) obviously holds

1 & . N

) E+F+»—Z(N—17])]pj:( )

2 5 3

Here N represents the number of vertices of the graph, L the number of

edges, p; the number of vertices of degree j, E the number of induced subgraph
having three vertices and no edges and F the number of triangles.

Consider the graph G whose vertices are in 1—1 correspondence with

the elements of the set P(X). Two vertices are adjacent if and only if the

corresponding elements are comparable in (P (X), C). The number of antichains

of length 3 is then equal to the quantity E in (2). It can be easily seen
that N =27 and

t~

1 1z S C A
J 2 Wty S r-2n et 2-2)(7)
2j 1 2 i=0 [

Il

=6"—5"—2.4743.372n,

F is still to be determined. Consider the sets 4, B, C (4, B, C C P (X))
corresponding to vertices of a triangle from G. Then holds ACBCC or a
similar relation in which the sets 4, B, C appear in a different order. Hence,
the number of triangles is equal to the number of chains of length 3. The
set B & P(X) for which |B|=i has exactly 2/—1 proper subsets and exactly
2n—i_ 1 proper oversets.

Therefore, B is the mean element in exactly (2/~1)(2/—1) chains of
length 3. The number of all chains of length 3 is then equal to > (n)

i=0 \ I
- T-1)=47—-2.304 27,
Putting the obtained expressions in (2) we get the result [1] for 4 (n, 3).
Notice that in the case of bipartite graphs we have F=0 and the

formula (2) expresses the number of induced subgraphs with three vertices
and no edges, in fact, in terms of vertex degrees.

As an example of application of (2) to biparite graphs we determine
the number of all arrangements of 3 knights (chess figures) on a chess board
of dimensions n-n in which they do not attack each other. As usual to each
chess figure we correspond a graph. The vertices of the graph are in 1—1
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correspondence with the fields of chessboard. Two vertices are joined by an
edge if and only if the figure can make a move between the corresponding
fields of the chess board. The graph corresponding to the knight is bipartite,
because the knight always goes from the white to the black field and vice versa.

Consider one corner of the chessboard and write in every field the
number of moves which knight can make if it is standing in that field. Then
we get the following schema:

2 3 4 4
3 46 6
4 6 8 8
4 6 8 8

The corresponding graph obviously has (for n> 4) 4 vertices of degree 2, 8
vertices of degree 3, 4 (n—4)+4 =4n— 12 vertices of degree 4, 4 (n—4) vertices
of degree 6 and (n—4)* vertices of degree 8. On the basis of (2) we have
for the number E of the arrangement of three knights on an n.n chessboard
in which they do not attack each other, the following expression

E—(lj)*;[<nz_3)-2-4+<n2—4)-3-8+(n2—5)~4-<4"—12>+<"2~7>'6

. (4n—-16)+(m>—9)- 8- (n—4)),
1. €.

(3) E:%(n—2)(n5+2n4—23n3+26n2+222n—540).

This result was otherwise noted in the chess problem literature (see [3],
p. 61, where the formula (3) is given without proof).
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