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The laws of reflection of light at a moving mirror with respect to an
arbitrary inertial frame of reference are different in the classical theory and
the theory of relativity. In this paper we shall show that one can realize experi-
ments which, within the limits of accuracy of measurements, would not satisfy
the results of both theories and, in this way, would represent a confirmation
of one of them.

First, we shall derive the relativistic law of reflection of light at a moving
mirror in the form we shall use for comparison with the corresponding clas-
sical law.

In the theory of relativity, as well as in the classical theory, the reflec-
tion of light at a fixed mirror takes place so that the angle of reflection is
equal to the angle of incidence, and both frequencies of the incident and the
reflected rays are equal. The laws, expressed in this manner, in the classical
theory are valid only with respect to the privileged frame of reference (the
absolute space) relative to which the velocity of light is the same in all direc-
tions and has the value ¢=3.10%cms-'. In the theory of relativity these laws
are valid with respect to any inertial frame of reference, provided the mirror
is fixed to it.

The direction and frequency of the light ray are determined by the fre-
quency vector

) faz[Lli,l], (x=1,2,3,4; i—1,2,3)
4 c

where v is the frequency and /={/} the unit direction 3-vector.
Let S be the inertial frame of reference with respect to which the mir-
ror L moves with a constant velocity v perpendicular to the mirror. Let « be

the angle of incidence (the angle between the incident ray and the normal to
the mirror). Let Ox'x2x® be the Cartesian orthogonal coordinate system rigidly
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connected with S in such a way that the x'-axis is perpendicular to the mirror

and the xZ%-axis is complanar with the incident ray and the velocity y. Then
(fig. 1)

) I'={cos «, sin «, 0},

and the frequency vector

3) fe —{V cos «, d sin «, 0, fv] .
c ¢ ¢

Let the frame of reference S be that with respect to

which the mirror L is at rest, and Ox!x%x3 the Car-
tesian orthogonal coordinate system, rigidly connected

with S, related to the sysiem Ox!x2x? by the special
Lorentz transformation

4) xl=y(x'- Bx4), X2 =x2, X3 =x3, xt = v (x*—Bxl),

where x*=ct, t being the time, 8 ~Y and Y= —-——1‘.
c yi-g
! Then one obtains the frequency vector f* of the
fig.l incident ray with respect to the coordinates x* from
- ox*
(5 *=f .
4 oxP
Herefrom
— v v o, v
6) f“=[—y(cosoc—ﬂ), —sin «, O,—Y(I—Bcosoc)],
¢ ¢ c
and, with respect to S, the frequency v of the incident ray is
) v=y(1—Bcosa)v,
and the unit direction vector F, with respect to the coordinates X,
@) F={ cosa—f3 ’ sin o ’0}.
l1—Bcosa y(l—-Bcosa)

If we denote by « the angle of incidence with respect to S, then, accor-
ding to (8),
— cosa—f — sin «

&) cost=————, Ssina= .
1-Bcosa Y(1—-fcosaw

The angle of reflection § (the angle between the reflected ray and the normal

to the mirror), with respect to S, is

(10) S=a,

and (fig. 2) the unit direction vector I of the reflected ray with respect to the
coordinates x! is

(n ll"={—cos§, sin §, 0}:[— cosa—f sin « }

1—Pcosa  y(l—Bcosa)
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and the frequency vector f* of the reflected ray with respect to the coordi-

nates x*, because of v=v, considering (7) and (11), becomes

*

(12) f‘°‘={—y(cos<x—-p)% sine-—, 0, y(l—pcosa)g}
From
ox™
0xP

we obtain for the frequency vector of the reflec-
ted ray with respect to the coordinates x*

(13) Jr=7e

fig.2

(14) fi°‘={-y2[26—(1 +82) cos oc]%, sinoc-—\c'—, 0, Y2 (1 +B*—2pBcos oc)%} ,

wherefrom the unit direction vector of that ray with respect to the coordina-
tes x* is

(15)

7‘.~{2B—(1+Bz)cosoc sin « 0}

1+B2—2Bcosa  y2(1+B*—2Bcosa) |

Since (fig. 1)

(16) 7"={——cos 3, sin §, 0},

3 being the angle of reflection with respect to S, we obtain for 3
BZ

(17) tg d ~smcx—;~—— —

(1+B%cos a— 2@

which represents the wanted relativistic law of reflection of light at a moving
mirror.

The classical law of reflection of light at a moving mirror with respect

to a frame of reference S moving with a velocity u with respect to the privil-
eged frame of reference (with respect to the absolute space), if the mirror

moves relative to S with a constant velocity v perpendicular to the mirror and

— —
if the incident ray is complanar with the velocities # and v, is, as was shown
in an earlier paper?,

(18) tg8=j11 {[1———(8 +B, cos A)?] [sinoc\/lv—ﬁfsin2 (x—2) — B, cos asin (oc-—)\)] +

+2B,(B+pB,cosh) sin)\[cosoc \/l-—stinNo&—Z)-kBl sina sin (oc—x)]

—B, [1+(B+B, cos A)?] sin x} R
where

(19) 4A=Q ~b—[-$2—[5fcos2 7)) [coscx \/1 —(ﬁsin2 (e —2) +B, sinasin (oc——)\)]—
—2(B+B,cosN)+ B, [1+(B+B, cosr)?]cos A,

1) Publ. Inst. Math. N. s., 12 (26), 1971, pp. 67—71.
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with B=’V, Bl=—u—, and A being the angle between u and the normal to the
c c

mirror. -

Let us note that for u=0, ie. for B, =0 (then S reduces to the absolute
space), the formula (18) reduces to (17), i.e. that the relativistic law of reflection
of light at a moving mirror with respect to any inertial frame of reference is
the same as the corresponding classical law with respect to the absolute spgce.

In order to compare results given by (17) and (18) with possible experi-
mental measurements, let us find the relativistic and classical angles of reflection
in the second approximations with respect to the quantities 3 and §,.

From (17), for B=0, we get d=u«, and, in the second approximation,
for the relativistic angle we may write that

(20) 8, =a+Bf (@)+p22 ().
Now, the left-hand side of (17), in the second approximation, is

faamnao

(CTA

i
083«

1 ¢

(1) tg (@ +Bf; +B) = tgo +—— (Bf, + B2 +
cos? a c
and the right-hand side, in the same approximation, gives

1 —
i ]

=tgoc-(1—BZ) 1+B._z__32+(32. 4 =
cos & cos? &

I ]
Cos & cos?

Equating expressions (21) and (22) we obtain (17) in the second appro-
ximation in the form

23) B( 1 fi-2 Smd)—l—Bz( 1 £+ sin & f%—4 sina +2tg<x)=0.
cos2 o cos2 o cos? o cos3 o cos3 o

(22) sino - (1— B?)

Since this equation is identically valid in @, for the functions f; («) and
fo () we get

(24) fi(@=2sina

and

(25) S (@) =sin 2,

and (20) becomes

(26) 3,=a+B-2sino+p?sin 2.

From (18), for =P, =0, we get 3=a, and, in the second approximation,
the classical angle of reflection may be written in the form

@7 o=+ By (et N+ By (o, M)+ By (2, 1)+ PBR.x (2 ) + Bl 4z (@, 1)
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The left-hand side of (18), in the second approximation, is

(28) tg (o« + B, +B: % +BZCPz+BBlX+B%4’2):

(52@1 +288,0,8; + 81 41),

sin o

tg“+4‘(B<P1+Bl¢1+52@2+ﬁpl)ﬁ+@ ‘-I)z)‘|'

while the right-hand side, in the second approximation, gives
29) sino — B, sino cos (x —A) — B2sino — BB, - 2 sin (x — 1) —

cosa{l —B-—z——ﬁl cos (oc—7\)+62—[3f Lsinz(a—k)Jrcosz)\:l}
cos & 2

Bf [—;— sin o sin? (¢ — A) + sin & cos? A — 2 cos o sin A cos )\J

cos oc{l —[3-—2———6l cos(a—)\)+62—ﬁ%[%sin2(oc—-7\)+cos2)\]]

CoS &

ﬁtgcx{l — B, cos (a—k)—BZ—BBI-Z%_—)\)— g [%sinz(oc—x)—kcoszl—

sin

2cos o sin A CoS A

]][HB'C(,%Jr@lcos(a—x)_

_ﬁz_{_@f _1_ Sin2(a_ )\) +CcosZA +BZ. -‘L—*"BBI 420_S_(E:]‘\) 4
2 cos?a cos o

sm a (1l +sin’a)

+ (51 cos? (o — 7\)] +p2-2

cosd o

sin A

+PBB;-2 + B}-2sinAcos A

Equating the expessions (28) and (29) we obtain (18), in the second
approximation, in the form

‘ 1 sin « 1
(30) rs( o2 )+Bl 4+
cos2 o cos2 « cos? o
. 1+ sin2
0, + sina <pf—25ma( + sin? «) +
0052 cosd o cos3 a
sin o sin A
+@BI( e
co 083 o cos2a

sino

+ 8l ( $i— 2sin7\cos7\)=0.

cos? o cos3
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From (30) we have

31 o, =2sina,

(32) ¢, =0,

33 @, =sin 2a,

(34) y=2sina,

3% ¢, =cos2a sin 22,

and (27) becomes
(36) 8, =o+B-2sino+ B2 sin 20 +BB, - 2sin A + B cos? a sin 2.

First of all, we shall attempt to make use of disagreement of (26) and (36),
taking the Earth as a frame of reference S and the mirror in a relative rest
with respect to the Earth. Then in both formulae 8 =0, and we have

(37 3, =«
and
(38) 3,, = o + B cos? e sin 22,

B, being the quotient of velocities of the Earth and of light with respect to
the absolute space.

From these formulae, in this case, it is seen that the angle of reflection
differs from the angle of incidence only in the classical theory.

We shall consider the change of 3, with 2, i.e. with change of direction
of motion of the frame of reference S with respect to the absolute space, and
with fixed value of «. From (38) we obtain that the extreme values of 3, are

(39) 3

We use a coordinate system Oxy rigidly connected with S in such a way
that the point of origin coincides with one of incident ray’s point (fig. 3),
that the x-axis is perpendicular to the mirror,
L and that the y-axis is in the plane of the
incident ray and the x-axis. Then the y-co-
ordinate of a trace (intersection) of the reflec-

ted ray on the y-axis is

(40) ycl = l (tg o+ tg 8r:l):

2
clext =% £ B1cos2a.

8¢ . . . ..
—— e ! being the distance of the point of origin O
from the mirror. The distance s between traces
which are maximally and minimally distant
o) I G from the point of origin O is, then,
tig.3 (41) §= l(tg 8cl x;wx —1g 8rlmin) ’
i.e. ) ) )
(42) s=1 s (801 max 801 min) ,
cos 8clmza.x - COS 8cl min
or, according to (39),
sin (87 - 2 cos? &) _sin (Bf -2cos? )

43) s=1

cos (« + pf cos2 ) - cos (& — B3 cos?a)  cos? o — sin? (B3 cos? ) )
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Since (38), by virtue of (36), is the second approximation of the result (18)
for B =0, (43) is justified only in that approximation, so that
2

s=21 ——
1 —Bicos?a
ie.
(44) | s=2181.

We note that this result is independent of .
If the EFarth is moving through the absolute space with the velocity
1 =30 kms—!, then B,-=10-4 and, for /=20 km, one obtains

(45) s=0.4 mm.

This displacement of the trace on the y-axis should be measurable and
it has to be realized during 24 hours, i.e. during one rotation of the Earth

about its own axis. Here we neglected the contribution to the velocilyz_;which
results from that rotation?.

The same displacement (45) may be attained with a considerably smal-
ler distance of the point of origin (the y-axis) from the mirror L. It is suf-
ficient to place through the point of origin a second mirror, the mirror L,,
parallel to the mirror L. Then the ray reflected from L, arrives at L, the
angle between that ray and the normal to L, being 3,. Taking this angle as
the angle of incidence, the angle of reflection 3, from the mirror L, may be
obtained from (38) substituting « by 3, and A by = — A, which is easy to show.
Therefrom

(46) 3, =8, — B} cos? 5, sin 22,
or, according to (38),
47 3 =a+ B} cos? o sin 24 — ﬁf cos? (a + (3% cos? a sin 2) sin 22,

which gives, in the second approximation,
(48) 3, =a.

It is seen that the trace on the y-axis after n reflections from L (fig. 4)
would have the coordinate

(49) Ya=nl(tgo+1g3,),

and we would have

(50) s=2nlp} |

instead of (44). For 8,=10-%, /=10m, n=2000 from (50) we have

(51) s=0.4 mm.

2) If one would consider this contribution one would obtain u, and consequently f3,,
as functions of A. Even without detailled studies of these functions one can conclude that
this will not seriously perturb the phenomenon, i.e. that even then a displacement of the
trace should exist according to the classical theory. The result would, of course, be different
form (45), however the difference would be small since the velocities of points of the
Earth’s surface due to rotation are small comparing to the velocity of 30 km s~—1.
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Using multifold reflections from the two mirrors the change of A may be
realized simply by a rotation of the whole apparatus as a rigid body about
an axis perpendicular to the xy-plane, o being
constant. This makes a 24-hours experiment,
y using the rotation of the Earth, unnecessary.

The absence of this displacement (which
could be considered any time during one year)
would indicate that either the Earth is at rest
relative to the absolute space or the classical
theory is not valid. In order to solve this ambi-
T g o= guity, we may place the frame of reference (the
apparatus) on a spacectaft. Then, under the as-
—————— sumption that the Earth is at rest relative to

8e1 the absolute space, B, is determined by the velo-
city of the spacecraft relative to the Earth.

For u=10 km s-! (the velocity of the spa-

BN cecraft relative to the Earth), we have f3,=
o
o Tl =L- 104, and for /=10 m, n=2000, from (50)
> 3
L : fig.4 L ™  one obtains
(52) s=0.13 mm.

The absence of the displacement of the trace in the experiment on the
Earth and, also, in the experiment on the spacecraft would signify that the
classical theory is not valid. On the contrary, the absence of the displacement
of the trace in both experiments would be, according to (37), i.e. (17), in agree-
ment with the theory of relativity. '

At the end let us note that the described experiments may be used also
to check theories based on the state of motion of the light souice.
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