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ON NONLINEAR EFFECTS IN SLENDER BODY THEORY

S. Pivko

(Communicated March 20, 1968)

1 — Basic potential equations

The aerodynamical properties of high speed airplanes and missiles, having
low aspect ratio wings and long tails, and travelling at subsonic or supersonic
speeds, have been in recent years studied with consideiable success by means
of the slender body theory [1—35].

The development of this theory for an inviscid compressible flow about
slender wing and body combinations of arbitrary cross sections has been based
most frequently on the linearized potential equation for fluid flow.

The basic partial differential equation satisfied by the velccity potential
in three-dimensional fluid flecw is derived from Euler’s momentum equation,
the continuity condition and the relation for the speed of pressure propagation.

Eliminating the pressure and the density from these equations, and intro-
ducing a perturbation velocity potential ¢, we obtain the differential potential
equation for the flow field in the most general form [6]
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where M, designates the free stream Mach number, equal to the ratio of the
free stream velocity ¥V, and the speed of sound a,, k& being the ratio of the
specific heats.

Once the perturbation velocity potential ¢ is determined, the aerodyna-
mical properties of slender bodies can be calculated.

Eq. (1) is the basic potential equation necessary for a full treatment of
the aerodynamics of slender bodies. Its solution is, in general, a cumbersome
mathematical problem.
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— In most cases, the aerodynamical properties of slender bodies can be
approximated by means of the first order theory. The body is assumed to
disturb the free stream only slightly. Eq. (1) is then reduced to the familiar
Prandtl-Glauert equation
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which is valid for both subsonic and supersonic flows.

This is the basic potential equation of the linearized compressible flow,
steady state theory.

Eq. (2) illustrates the change of mathematical character of the gas flow
in the three speed regimes, subsonic, transonic and supersonic. This equation
is elliptic, parabolic or hyperbolic when the first term is positive, zero or
negative. It is a 1esult of the small perturbation hypothesis that the character
of the equation depends only on the Mach number of the undisturbed stream.

A general solution of Eq. (2) can be written in the following form [7]
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The first term on the right hand side is the general solution to Laplace’s
equation in two dimensions
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for the specified boundary conditions.

The function g{(x) contains the entire dependence on the Mach number.
It has been determined by Heaslet and Lomax [6], who used Fourier transforms,
for subsonic flow (3, < 1), and by Ward [8], who used Laplace transforms,
for supersonic flow (M, > 1). Actually, the entire difference bctween the
subsonic and supersonic cases enters through a term which contributes to the
pressure coefficient but not to the aercdynamical loading on the slender body
surface.

It is thus apparent, from Eq. (3), that the three-dimensional velocity field
induced by slender airplanes or missiles, flying at either subsonic or supersonic
speeds, is approximated in the vicinity of the airplane or missile by a velocity field
that satisfies the twe-dimensional Laplace’s equation and the boundary conditions
in transverse planes, plus a longitudinal velocity field that depends on the
longitudinal rate of change of the cross-sectional area and is independent of
the cross flow coordinates y and z.

— Further approximation to the slender body theory has been obtained
by giving attention to the fact that there are certain flows about elongated
bedies in which the conditions near the body can be approximated by neglecting
the first term (1 —M2)o,, in comparison with ¢, and ¢, in the potential
equation (2), the x direction being the direction of the elongation of the body.

This was originally used by Munk [1] in studying the aerodynamics of
slender airships. R.T. Jones [2] and J. R. Spreiter [3] extended this method to
the study of low aspect ratio pointed wings and of slender wing and body
combinations.

In this assumption that for a very long slender body whose cross section
varies slowly with x, Eq. (2) is reduced to a simple parabolic differential equa-
tion (4) in threz dimensions. Consequently, for this class of problems, the
calculation of the flow is independent of the Mach number,
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The simplified form (4) of potential equation permits the analysis to be
undertaken as a two-dimensional potential flow problem. Each cross flow plane,
therefore, may be treated independently of the adjacent planes in the determi-
nation of the velocity potential. Thus, the potential is determined for any
arbitrary x plane normal to the body axis.

This simple slender body theory of Munk and Jones has been applied
with considerable success to the prediction of pressure distributions, loadings
and forces on inclined elongated bodies, highly swept back wings, slender wing
and body combinations [4,9,10], and the like. There is also considerable
experimental verification.

It should be remembered that these results give only rough estimates. Ac-
curate results require more detailed investigation.

2 — Nonlinear potential equations

It has been known for some time that the linearized slender body theory,
based on the solutions of homogeneous differential equations (2) or (4) for
steady state fluid flow, has serious limitations. This theory gives only a first
approximation and in many cases needs important corrections. It has been
verified that in these cases, even the study of small perturbation flows requires
a solution of the nonlinear equation (1).

— The various developed methods [11] which give higher approximations
are, in general, methods of successive approximation taking into account the
terms on the right hand side of the basic potential equation (1).

As an example of the results of these methods, a certain insight into the
complexity of the determination of nonlinear effects has been obtained by Van
Dyke [12] in his second order theory. Using an iteration procedure and taking
as the initial step the first order solution of the homogeneous differential
equation (2), a second order solution of Eq. (1) is obtained. This technique
for numerical solution is rather complicated.

The nonlinear slender body theories are closer to the theoretically exact
adiabatic flow and constitute methods for overcoming the shortcomings of the
linearized theories. These methods are tedious but are, in general, capable of
yielding any desired accuracy.

It can be concluded, however, that precise determination of nonlinear
effects associated with the potential equation (1) is too complicated a problem
for really useful results to be expected in practice.

-~ Nevertheless, the treatment of the general equation of motion (1) can
be considerably simplified in two special cases, corresponding to transonic and
hypersonic speed ranges, in which the linearization of Eq. (1), even for small
disturbances, is not justified [6,7,13]

It has been verified that for thin wings and elongated bodies at small
angles of attack, an approximate analysis based on the linearized potential
equation (2) is valid for flight Mach numbers sufficiently removed from unity
and not of excessive magnitude. The treatment of these two latter regimes,
that is, transonic and hypersonic, forces us to abandon the simplification
inherent in the linearized theory and requires a solution of the nonlinear Eq. (1).

The assumptions that the free stream velocity V. is of the same order
of magnitude as the sound velocity ., or that it is large in comparison with
the sound velocity, leads to a simplification of the general equation (1).
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Thus, for transonic flow fields, only the first term on the right hand side
of Eq. (1) is retained, so that the potential equation
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is used.
On the other hand, for two-dimensional hypersonic flow, the potential

equation takes the form
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In [14], the difference between the results of the linearized theory and
the actual conditions in the transonic and hypersonic speed ranges is shown
by comparing the computed values of the coefficient of the pressure acting on
an inclined plane surface in a two-dimensional flow.

3 — Nonlinear pressure-velocity relation

Another, very important source of nonlinearity in the slender body theory
are the nonlicar terms in the pressure-velocity relation, used to formulate the
pressure coefficient.

Usually, one utilises the pressure coefficient C,, expressed with respect to
the perturbation velocity components u, v, w along the body axes x, y, z, in
terms of the angle of attack o and the angle of sideslip $, in the form
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where p designates the pressure on the body surface, and p., ¢., V. are the
pressure, the dynamic pressure and the velocity of the free stream.

The loading coefficient or the difference between the pressure coefficients
at corresponding points on the lower and upper surface, is defined by
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where the superscript (+) refers to the impact pressures of the lower surface,
while (—) refers to the suction pressures of the upper surface.

In the classical slender body theory of Munk and Jones, and sometimes
also in the first order theory, the quadratic terms (v2+w2)/F2 in Eq. (7) are
neglected.

It has been known for some time that the use of such an approximate
expression for the pressure coefficient, in which due account is not taken of
the nonlinear terms, yields considerable disagreement with the actual, measured
values, and also both incorrect pressure and loading distributions along the
surface of slender bodies [7,15].

On the other hand it has been observed that the more precise expres-
sion (7) for the pressure coefficient C), including quadratic terms in the pertur-
bation velocity components affords an improvement in the approximation to
C, on the surface of a slender body in cases where a comparison can be
made with more exact solutions or with experimental values.
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It is noted that the inclusion of a quadratic term is not obviously consis-
tent with the approximations already made in deriving the potential differential
equation (2).

— To illustrate the order of magnitude of this disagreement or error,
more precise expressions for the pressure coefficient C, and the loading coef-
ficient AC, on a slender cruciform wing and body combination [7,15,16] are
gvaluated by means of Eg. (7).

As shown in Fig. 1, the combination is formed of a circular body and
flat highly swept back, low aspect ratio wings, inclined at small angles of
pitch o and yaw 8.

In this general case, it 'is easily
established that the total potential func-
tion for the perturbation velocities is
given by the sum

9 Q=+ Py +Op

where @, is the perturbation velocity
potential due to the component of velo-
city along the body axis, while ¢, and
o are the perturbation potentials due to
the angles of attack « and yaw B.

The potential at zero angles of
attack and yaw, or the thickness poten-
tial @, which contains the effects of the
body thickness and the Mach number,
is given as the real part of the complex
potential

(10 Fo(@)=Vea da InC+ g(x)
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where {=y+iz is the complex variable in the crossflow plane Oyz, and ais
the local radius of the body in the crossflow plane corresponding to x. The
function g{x) contains the effects of the Mach number and the longitudinal
rate of change of the cross-sectional area.

The perturbation velocity potential @, due to the transversal component
of velocity V., sinasV, «, normal to the body axis, is independent of the
Mach number. It is determined as the real part of the complex potential
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where s is the local semispan of the horizontal wing.

From a similar expression, the perturbation velocity potential v, due to
the transversal velocity component V, sin BV, B, is determined.

The perturbation velocity potentials @y, o, and @z produce velocity com-
ponents which are linearly superposable.

Let wuy, v, wp be the perturbation velocity components associated with o,
while u,, v,, W, and ug, v, ws designate those associated with ¢, and o,
respectively.
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Then, from Eq. (7), the pressure coefficient, including quadratic terms
in the perturbation velocity components, is given by
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From Egs (10) and (11), the perturbation veiccity components on the
upper surface of the horizontal wing are easily obtained as follows
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h being the local semispan of the vertical wing.

By means of these expressions and using Eq. (12), the pressure distribu-
tion on the upper surface of the horizontal wing, shown in Fig. 1, can be
calculated [15].
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The effect of nonlinear terms in the pressure-veloczty relation (7) alters
[16] the pressure coefficient by
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The symmetry properties of the wing yield that the perturbation velocity
components 4, g, Vo, Vg W, have the same sign on the upper and lower surfaces.

The loading coefficient for the horizontal wing is then given by
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represents the effect of nonlinear terms in Eq. (7).

A similar analysis can be carried out for the body.

The perturbation velocity components obtained for the upper surface of
the body are as follows
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From these expressions and using Eq. (12), the pression distribution on
the upper surface of the circular body, shown in Fig. 1, can be calculated [15].

The effect of nonlinear terms in Eq. (7) is represented by
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Taking account of the symmetry properties of the body, the loading coef-
ficient for the body is obtained as
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wherein the effect of nonlinear terms in Eq. (7) is given by
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It should be remembered that the loading is not influenced by thickness
effects associated with the perturbation velocity potential g,.

From these results it appears that the nonlinear terms in Eq. (7) have
considerable effect on both pressure and loading distribution over the surface
of inclined slender wing and body combinations.

In the limiting case of a slender body of revolution, without wing, it
results from Egqs (21) and (22) that the neglected quadratic terms yield an error
of order of 100% in the loading distribution.
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